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Chapter 1

About this document

1.1 Prerequisites

These notes have been prepared under the assumption that the reader understands basic statistics,
linear algebra, and mathematical optimization. There are many sources for this material, one are
the appendices to Introductory Econometrics: A Modern Approach by Jeffrey Wooldridge. It is the
student’s resposibility to get up to speed on this material, it will not be covered in class

This document integrates lecture notes for a one year graduate level course with computer programs
that illustrate and apply the methods that are studied. The immediate availability of executable (and
modifiable) example programs when using the PDF version of the document is a distinguishing feature
of these notes. If printed, the document is a somewhat terse approximation to a textbook. These notes
are not intended to be a perfect substitute for a printed textbook. If you are a student of mine, please
note that last sentence carefully. There are many good textbooks available. Students taking my courses
should read the appropriate sections from at least one of the following books (or other textbooks with
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similar level and content)

• Cameron, A.C. and P.K. Trivedi, Microeconometrics - Methods and Applications

• Davidson, R. and J.G. MacKinnon, Econometric Theory and Methods

• Gallant, A.R., An Introduction to Econometric Theory

• Hamilton, J.D., Time Series Analysis

• Hayashi, F., Econometrics

A more introductory-level reference is Introductory Econometrics: A Modern Approach by Jeffrey
Wooldridge.

1.2 Contents

With respect to contents, the emphasis is on estimation and inference within the world of stationary
data. If you take a moment to read the licensing information in the next section, you’ll see that you
are free to copy and modify the document. If anyone would like to contribute material that expands
the contents, it would be very welcome. Error corrections and other additions are also welcome.

The integrated examples (they are on-line here and the support files are here) are an important
part of these notes. GNU Octave (www.octave.org) has been used for most of the example programs,
which are scattered though the document. This choice is motivated by several factors. The first is
the high quality of the Octave environment for doing applied econometrics. Octave is similar to the

http://pareto.uab.es/mcreel/Econometrics/Examples
http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles
http://www.octave.org


commercial package Matlab R©, and will run scripts for that language without modification1. The
fundamental tools (manipulation of matrices, statistical functions, minimization, etc.) exist and are
implemented in a way that make extending them fairly easy. Second, an advantage of free software is
that you don’t have to pay for it. This can be an important consideration if you are at a university
with a tight budget or if need to run many copies, as can be the case if you do parallel computing
(discussed in Chapter 23). Third, Octave runs on GNU/Linux, Windows and MacOS. Figure 1.1
shows a sample GNU/Linux work environment, with an Octave script being edited, and the results
are visible in an embedded shell window. As of 2011, some examples are being added using Gretl, the
Gnu Regression, Econometrics, and Time-Series Library. This is an easy to use program, available in
a number of languages, and it comes with a lot of data ready to use. It runs on the major operating
systems. As of 2012, I am increasingly trying to make examples run on Matlab, though the need for
add-on toolboxes for tasks as simple as generating random numbers limits what can be done.

The main document was prepared using LYX (www.lyx.org). LYX is a free2 “what you see is what
you mean” word processor, basically working as a graphical frontend to LATEX. It (with help from
other applications) can export your work in LATEX, HTML, PDF and several other forms. It will run
on Linux, Windows, and MacOS systems. Figure 1.2 shows LYX editing this document.

1Matlab R©is a trademark of The Mathworks, Inc. Octave will run pure Matlab scripts. If a Matlab script calls an extension, such as a
toolbox function, then it is necessary to make a similar extension available to Octave. The examples discussed in this document call a number
of functions, such as a BFGS minimizer, a program for ML estimation, etc. All of this code is provided with the examples, as well as on the
PelicanHPC live CD image.

2”Free” is used in the sense of ”freedom”, but LYX is also free of charge (free as in ”free beer”).

http://gretl.sourceforge.net
http://www.lyx.org


Figure 1.1: Octave



Figure 1.2: LYX



1.3 Licenses

All materials are copyrighted by Michael Creel with the date that appears above. They are provided
under the terms of the GNU General Public License, ver. 2, which forms Section 26.1 of the notes, or,
at your option, under the Creative Commons Attribution-Share Alike 2.5 license, which forms Section
26.2 of the notes. The main thing you need to know is that you are free to modify and distribute these
materials in any way you like, as long as you share your contributions in the same way the materials
are made available to you. In particular, you must make available the source files, in editable form,
for your modified version of the materials.

1.4 Obtaining the materials

The materials are available on my web page. In addition to the final product, which you’re probably
looking at in some form now, you can obtain the editable LYX sources, which will allow you to create
your own version, if you like, or send error corrections and contributions.

1.5 An easy way run the examples

Octave is available from the Octave home page, www.octave.org. Also, some updated links to packages
for Windows and MacOS are at http://www.dynare.org/download/octave. The example programs are
available as links to files on my web page in the PDF version, and here. Support files needed to run
these are available here. The files won’t run properly from your browser, since there are dependencies
between files - they are only illustrative when browsing. To see how to use these files (edit and run

http://creativecommons.org/licenses/by-sa/2.5/
http://pareto.uab.es/mcreel/Econometrics/
http://pareto.uab.es/mcreel/Econometrics/Examples
http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles


them), you should go to the home page of this document, since you will probably want to download the
pdf version together with all the support files and examples. Then set the base URL of the PDF file
to point to wherever the Octave files are installed. Then you need to install Octave and the support
files. All of this may sound a bit complicated, because it is. An easier solution is available:

The Linux OS image file econometrics.iso an ISO image file that may be copied to USB or burnt
to CDROM. It contains a bootable-from-CD or USB GNU/Linux system. These notes, in source form
and as a PDF, together with all of the examples and the software needed to run them are available on
econometrics.iso. I recommend starting off by using virtualization, to run the Linux system with all of
the materials inside of a virtual computer, while still running your normal operating system. Various
virtualization platforms are available. I recommend Virtualbox 3, which runs on Windows, Linux, and
Mac OS.

3Virtualbox is free software (GPL v2). That, and the fact that it works very well, is the reason it is recommended here. There are a number
of similar products available. It is possible to run PelicanHPC as a virtual machine, and to communicate with the installed operating system
using a private network. Learning how to do this is not too difficult, and it is very convenient.

http://pareto.uab.es/mcreel/Econometrics
http://pareto.uab.es/mcreel/Econometrics/econometrics.iso
http://www.virtualbox.org/


Chapter 2

Introduction: Economic and
econometric models

Here’s some data: 100 observations on 3 economic variables. Let’s do some exploratory analysis using
Gretl:

• histograms

• correlations

• x-y scatterplots

So, what can we say? Correlations? Yes. Causality? Who knows? This is economic data, generated by
economic agents, following their own beliefs, technologies and preferences. It is not experimental data
generated under controlled conditions. How can we determine causality if we don’t have experimental
data?
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Without a model, we can’t distinguish correlation from causality. It turns out that the variables
we’re looking at are QUANTITY (q), PRICE (p), and INCOME (m). Economic theory tells us that
the quantity of a good that consumers will puchase (the demand function) is something like:

q = f(p,m, z)

• q is the quantity demanded

• p is the price of the good

• m is income

• z is a vector of other variables that may affect demand

The supply of the good to the market is the aggregation of the firms’ supply functions. The market
supply function is something like

q = g(p, z)

Suppose we have a sample consisting of a number of observations on q p and m at different time
periods t = 1, 2, ..., n. Supply and demand in each period is

qt = f(pt,mt, zt)
qt = g(pt, zt)

(draw some graphs showing roles of m and z)
This is the basic economic model of supply and demand: q and p are determined in the market

equilibrium, given by the intersection of the two curves. These two variables are determined jointly by



the model, and are the endogenous variables. Income (m) is not determined by this model, its value is
determined independently of q and p by some other process. m is an exogenous variable. So, m causes
q, though the demand function. Because q and p are jointly determined, m also causes p. p and q do
not cause m, according to this theoretical model. q and p have a joint causal relationship.

• Economic theory can help us to determine the causality relationships between correlated vari-
ables.

• If we had experimental data, we could control certain variables and observe the outcomes for
other variables. If we see that variable x changes as the controlled value of variable y is changed,
then we know that y causes x. With economic data, we are unable to control the values of
the variables: for example in supply and demand, if price changes, then quantity changes, but
quantity also affect price. We can’t control the market price, because the market price changes as
quantity adjusts. This is the reason we need a theoretical model to help us distinguish correlation
and causality.

The model is essentially a theoretical construct up to now:

• We don’t know the forms of the functions f and g.

• Some components of zt may not be observable. For example, people don’t eat the same lunch
every day, and you can’t tell what they will order just by looking at them. There are unobservable
components to supply and demand, and we can model them as random variables. Suppose we
can break zt into two unobservable components εt1 and εt2.



An econometric model attempts to quantify the relationship more precisely. A step toward an estimable
econometric model is to suppose that the model may be written as

qt = α1 + α2pt + α3mt + εt1

qt = β1 + β2pt + εt1

We have imposed a number of restrictions on the theoretical model:

• The functions f and g have been specified to be linear functions

• The parameters (α1, β2, etc.) are constant over time.

• There is a single unobservable component in each equation, and we assume it is additive.

If we assume nothing about the error terms εt1 and εt2, we can always write the last two equations,
as the errors simply make up the difference between the true demand and supply functions and the
assumed forms. But in order for the β coefficients to exist in a sense that has economic meaning, and
in order to be able to use sample data to make reliable inferences about their values, we need to make
additional assumptions. Such assumptions might be something like:

• E(εtj) = 0, j = 1, 2

• E(ptεtj) = 0, j = 1, 2

• E(mtεtj) = 0, j = 1, 2

These are assertions that the errors are uncorrelated with the variables, and such assertions may or
may not be reasonable. Later we will see how such assumption may be used and/or tested.



All of the last six bulleted points have no theoretical basis, in that the theory of supply and
demand doesn’t imply these conditions. The validity of any results we obtain using this model will
be contingent on these additional restrictions being at least approximately correct. For this reason,
specification testing will be needed, to check that the model seems to be reasonable. Only when we
are convinced that the model is at least approximately correct should we use it for economic analysis.

When testing a hypothesis using an econometric model, at least three factors can cause a statistical
test to reject the null hypothesis:

1. the hypothesis is false

2. a type I error has occured

3. the econometric model is not correctly specified, and thus the test does not have the assumed
distribution

To be able to make scientific progress, we would like to ensure that the third reason is not contributing
in a major way to rejections, so that rejection will be most likely due to either the first or second
reasons. Hopefully the above example makes it clear that econometric models are necessarily more
detailed than what we can obtain from economic theory, and that this additional detail introduces
many possible sources of misspecification of econometric models. In the next few sections we will
obtain results supposing that the econometric model is entirely correctly specified. Later we will
examine the consequences of misspecification and see some methods for determining if a model is
correctly specified. Later on, econometric methods that seek to minimize maintained assumptions are
introduced.



Chapter 3

Ordinary Least Squares

3.1 The Linear Model

Consider approximating a variable y using the variables x1, x2, ..., xk. We can consider a model that is
a linear approximation:

Linearity: the model is a linear function of the parameter vector β0 :

y = β0
1x1 + β0

2x2 + ...+ β0
kxk + ε

or, using vector notation:
y = x′β0 + ε

The dependent variable y is a scalar random variable, x = ( x1 x2 · · · xk)
′ is a k-vector of explana-

tory variables, and β0 = ( β0
1 β0

2 · · · β0
k)
′
. The superscript “0” in β0 means this is the ”true value”

of the unknown parameter. It will be defined more precisely later, and usually suppressed when it’s
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not necessary for clarity.
Suppose that we want to use data to try to determine the best linear approximation to y using the

variables x. The data {(yt,xt)} , t = 1, 2, ..., n are obtained by some form of sampling1. An individual
observation is

yt = x′tβ + εt

The n observations can be written in matrix form as

y = Xβ + ε, (3.1)

where y =
(
y1 y2 · · · yn

)′
is n× 1 and X =

(
x1 x2 · · · xn

)′
.

Linear models are more general than they might first appear, since one can employ nonlinear
transformations of the variables:

ϕ0(z) =
[
ϕ1(w) ϕ2(w) · · · ϕp(w)

]
β + ε

where the φi() are known functions. Defining y = ϕ0(z), x1 = ϕ1(w), etc. leads to a model in the form
of equation 3.4. For example, the Cobb-Douglas model

z = Awβ2
2 w

β3
3 exp(ε)

can be transformed logarithmically to obtain

ln z = lnA+ β2 lnw2 + β3 lnw3 + ε.

1For example, cross-sectional data may be obtained by random sampling. Time series data accumulate historically.



If we define y = ln z, β1 = lnA, etc., we can put the model in the form needed. The approximation is
linear in the parameters, but not necessarily linear in the variables.

3.2 Estimation by least squares

Figure 3.1, obtained by running TypicalData.m shows some data that follows the linear model yt =
β1 + β2xt2 + εt. The green line is the ”true” regression line β1 + β2xt2, and the red crosses are the data
points (xt2, yt), where εt is a random error that has mean zero and is independent of xt2. Exactly how
the green line is defined will become clear later. In practice, we only have the data, and we don’t know
where the green line lies. We need to gain information about the straight line that best fits the data
points.

The ordinary least squares (OLS) estimator is defined as the value that minimizes the sum of the
squared errors:

β̂ = arg min s(β)

where

s(β) =
n∑
t=1

(yt − x′tβ)2 (3.2)

= (y−Xβ)′ (y−Xβ)
= y′y− 2y′Xβ + β′X′Xβ
= ‖ y−Xβ ‖2

http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/TypicalData.m


Figure 3.1: Typical data, Classical Model
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This last expression makes it clear how the OLS estimator is defined: it minimizes the Euclidean dis-
tance between y and Xβ. The fitted OLS coefficients are those that give the best linear approximation
to y using x as basis functions, where ”best” means minimum Euclidean distance. One could think
of other estimators based upon other metrics. For example, the minimum absolute distance (MAD)
minimizes ∑n

t=1 |yt − x′tβ|. Later, we will see that which estimator is best in terms of their statistical
properties, rather than in terms of the metrics that define them, depends upon the properties of ε,
about which we have as yet made no assumptions.

• To minimize the criterion s(β), find the derivative with respect to β:

Dβs(β) = −2X′y + 2X′Xβ

Then setting it to zeros gives

Dβs(β̂) = −2X′y + 2X′Xβ̂ ≡ 0

so
β̂ = (X′X)−1X′y.

• To verify that this is a minimum, check the second order sufficient condition:

D2
βs(β̂) = 2X′X

Since ρ(X) = K, this matrix is positive definite, since it’s a quadratic form in a p.d. matrix
(identity matrix of order n), so β̂ is in fact a minimizer.



• The fitted values are the vector ŷ = Xβ̂.

• The residuals are the vector ε̂ = y−Xβ̂

• Note that

y = Xβ + ε

= Xβ̂ + ε̂

• Also, the first order conditions can be written as

X′y−X′Xβ̂ = 0
X′

(
y−Xβ̂

)
= 0

X′ε̂ = 0

which is to say, the OLS residuals are orthogonal to X. Let’s look at this more carefully.

3.3 Geometric interpretation of least squares estimation

In X, Y Space

Figure 3.2 shows a typical fit to data, along with the true regression line. Note that the true line and
the estimated line are different. This figure was created by running the Octave program OlsFit.m .
You can experiment with changing the parameter values to see how this affects the fit, and to see how
the fitted line will sometimes be close to the true line, and sometimes rather far away.

http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/OlsFit.m


Figure 3.2: Example OLS Fit
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In Observation Space

If we want to plot in observation space, we’ll need to use only two or three observations, or we’ll
encounter some limitations of the blackboard. If we try to use 3, we’ll encounter the limits of my
artistic ability, so let’s use two. With only two observations, we can’t have K > 1.

Figure 3.3: The fit in observation space

Observation 2

Observation 1

x

y

S(x)

x*beta=P_xY

e = M_xY

• We can decompose y into two components: the orthogonal projection onto the K−dimensional
space spanned by X, Xβ̂, and the component that is the orthogonal projection onto the n−K
subpace that is orthogonal to the span of X, ε̂.



• Since β̂ is chosen to make ε̂ as short as possible, ε̂ will be orthogonal to the space spanned by
X. Since X is in this space, X ′ε̂ = 0. Note that the f.o.c. that define the least squares estimator
imply that this is so.

Projection Matrices

Xβ̂ is the projection of y onto the span of X, or

Xβ̂ = X (X ′X)−1
X ′y

Therefore, the matrix that projects y onto the span of X is

PX = X(X ′X)−1X ′

since
Xβ̂ = PXy.

ε̂ is the projection of y onto the N −K dimensional space that is orthogonal to the span of X. We
have that

ε̂ = y −Xβ̂
= y −X(X ′X)−1X ′y

=
[
In −X(X ′X)−1X ′

]
y.



So the matrix that projects y onto the space orthogonal to the span of X is

MX = In −X(X ′X)−1X ′

= In − PX .

We have
ε̂ = MXy.

Therefore

y = PXy +MXy

= Xβ̂ + ε̂.

These two projection matrices decompose the n dimensional vector y into two orthogonal components
- the portion that lies in the K dimensional space defined by X, and the portion that lies in the
orthogonal n−K dimensional space.

• Note that both PX and MX are symmetric and idempotent.

– A symmetric matrix A is one such that A = A′.

– An idempotent matrix A is one such that A = AA.

– The only nonsingular idempotent matrix is the identity matrix.



3.4 Influential observations and outliers

The OLS estimator of the ith element of the vector β0 is simply

β̂i =
[
(X ′X)−1X ′

]
i· y

= c′iy

This is how we define a linear estimator - it’s a linear function of the dependent variable. Since it’s
a linear combination of the observations on the dependent variable, where the weights are determined
by the observations on the regressors, some observations may have more influence than others.

To investigate this, let et be an n vector of zeros with a 1 in the tth position, i.e., it’s the
tth column of the matrix In. Define

ht = (PX)tt
= e′tPXet

so ht is the tth element on the main diagonal of PX . Note that

ht = ‖ PXet ‖2

so
ht ≤‖ et ‖2= 1

So 0 < ht < 1. Also,
TrPX = K ⇒ h = K/n.



So the average of the ht is K/n. The value ht is referred to as the leverage of the observation. If
the leverage is much higher than average, the observation has the potential to affect the OLS fit
importantly. However, an observation may also be influential due to the value of yt, rather than the
weight it is multiplied by, which only depends on the xt’s.

To account for this, consider estimation of β without using the tth observation (designate this
estimator as β̂(t)). One can show (see Davidson and MacKinnon, pp. 32-5 for proof) that

β̂(t) = β̂ −
( 1

1− ht

)
(X ′X)−1X ′tε̂t

so the change in the tth observations fitted value is

x′tβ̂ − x′tβ̂(t) =
(

ht
1− ht

)
ε̂t

While an observation may be influential if it doesn’t affect its own fitted value, it certainly is influential
if it does. A fast means of identifying influential observations is to plot

(
ht

1−ht

)
ε̂t (which I will refer to

as the own influence of the observation) as a function of t. Figure 3.4 gives an example plot of data,
fit, leverage and influence. The Octave program is InfluentialObservation.m. (note to self when
lecturing: load the data ../OLS/influencedata into Gretl and reproduce this). If you re-run
the program you will see that the leverage of the last observation (an outlying value of x) is always
high, and the influence is sometimes high.

After influential observations are detected, one needs to determine why they are influential. Possible
causes include:

• data entry error, which can easily be corrected once detected. Data entry errors are very common.

http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/InfluentialObservation.m


Figure 3.4: Detection of influential observations
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• special economic factors that affect some observations. These would need to be identified and
incorporated in the model. This is the idea behind structural change: the parameters may not
be constant across all observations.

• pure randomness may have caused us to sample a low-probability observation.

There exist robust estimation methods that downweight outliers.

3.5 Goodness of fit

The fitted model is
y = Xβ̂ + ε̂

Take the inner product:

y′y = β̂′X ′Xβ̂ + 2β̂′X ′ε̂+ ε̂′ε̂

But the middle term of the RHS is zero since X ′ε̂ = 0, so

y′y = β̂′X ′Xβ̂ + ε̂′ε̂ (3.3)



The uncentered R2
u is defined as

R2
u = 1− ε̂′ε̂

y′y

= β̂′X ′Xβ̂

y′y

= ‖ PXy ‖2

‖ y ‖2

= cos2(φ),

where φ is the angle between y and the span of X .

• The uncentered R2 changes if we add a constant to y, since this changes φ (see Figure 3.5, the
yellow vector is a constant, since it’s on the 45 degree line in observation space). Another, more
common definition measures the contribution of the variables, other than the constant term, to
explaining the variation in y. Thus it measures the ability of the model to explain the variation
of y about its unconditional sample mean.

Let ι = (1, 1, ..., 1)′, a n -vector. So

Mι = In − ι(ι′ι)−1ι′

= In − ιι′/n

Mιy just returns the vector of deviations from the mean. In terms of deviations from the mean,
equation 3.3 becomes

y′Mιy = β̂′X ′MιXβ̂ + ε̂′Mιε̂



Figure 3.5: Uncentered R2



The centered R2
c is defined as

R2
c = 1− ε̂′ε̂

y′Mιy
= 1− ESS

TSS

where ESS = ε̂′ε̂ and TSS = y′Mιy=
∑n
t=1(yt − ȳ)2.

Supposing that X contains a column of ones (i.e., there is a constant term),

X ′ε̂ = 0⇒
∑
t
ε̂t = 0

so Mιε̂ = ε̂. In this case
y′Mιy = β̂′X ′MιXβ̂ + ε̂′ε̂

So
R2
c = RSS

TSS

where RSS = β̂′X ′MιXβ̂

• Supposing that a column of ones is in the space spanned by X (PXι = ι), then one can show
that 0 ≤ R2

c ≤ 1.

3.6 The classical linear regression model

Up to this point the model is empty of content beyond the definition of a best linear approximation
to y and some geometrical properties. There is no economic content to the model, and the regression
parameters have no economic interpretation. For example, what is the partial derivative of y with



respect to xj? The linear approximation is

y = β1x1 + β2x2 + ...+ βkxk + ε

The partial derivative is
∂y

∂xj
= βj + ∂ε

∂xj

Up to now, there’s no guarantee that ∂ε
∂xj

=0. For the β to have an economic meaning, we need to
make additional assumptions. The assumptions that are appropriate to make depend on the data
under consideration. We’ll start with the classical linear regression model, which incorporates some
assumptions that are clearly not realistic for economic data. This is to be able to explain some concepts
with a minimum of confusion and notational clutter. Later we’ll adapt the results to what we can get
with more realistic assumptions.

Linearity: the model is a linear function of the parameter vector β0 :

y = β0
1x1 + β0

2x2 + ...+ β0
kxk + ε (3.4)

or, using vector notation:
y = x′β0 + ε

Nonstochastic linearly independent regressors: X is a fixed matrix of constants, it has rank
K equal to its number of columns, and

lim 1
n

X′X = QX (3.5)



where QX is a finite positive definite matrix. This is needed to be able to identify the individual effects
of the explanatory variables.

Independently and identically distributed errors:

ε ∼ IID(0, σ2In) (3.6)

ε is jointly distributed IID. This implies the following two properties:
Homoscedastic errors:

V (εt) = σ2
0,∀t (3.7)

Nonautocorrelated errors:

E(εtεs) = 0,∀t 6= s (3.8)

Optionally, we will sometimes assume that the errors are normally distributed.
Normally distributed errors:

ε ∼ N(0, σ2In) (3.9)

3.7 Small sample statistical properties of the least squares
estimator

Up to now, we have only examined numeric properties of the OLS estimator, that always hold. Now
we will examine statistical properties. The statistical properties depend upon the assumptions we
make.



Unbiasedness

We have β̂ = (X ′X)−1X ′y. By linearity,

β̂ = (X ′X)−1X ′ (Xβ + ε)
= β + (X ′X)−1X ′ε

By 3.5 and 3.6

E(X ′X)−1X ′ε = E(X ′X)−1X ′ε

= (X ′X)−1X ′Eε

= 0

so the OLS estimator is unbiased under the assumptions of the classical model.
Figure 3.6 shows the results of a small Monte Carlo experiment where the OLS estimator was

calculated for 10000 samples from the classical model with y = 1 + 2x+ ε, where n = 20, σ2
ε = 9, and

x is fixed across samples. We can see that the β2 appears to be estimated without bias. The program
that generates the plot is Unbiased.m , if you would like to experiment with this.

With time series data, the OLS estimator will often be biased. Figure 3.7 shows the results of
a small Monte Carlo experiment where the OLS estimator was calculated for 1000 samples from the
AR(1) model with yt = 0 + 0.9yt−1 + εt, where n = 20 and σ2

ε = 1. In this case, assumption 3.5 does
not hold: the regressors are stochastic. We can see that the bias in the estimation of β2 is about -0.2.

The program that generates the plot is Biased.m , if you would like to experiment with this.

http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/Unbiased.m
http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/Biased.m


Figure 3.6: Unbiasedness of OLS under classical assumptions
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Figure 3.7: Biasedness of OLS when an assumption fails
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Normality

With the linearity assumption, we have β̂ = β + (X ′X)−1X ′ε. This is a linear function of ε. Adding
the assumption of normality (3.9, which implies strong exogeneity), then

β̂ ∼ N
(
β, (X ′X)−1σ2

0
)

since a linear function of a normal random vector is also normally distributed. In Figure 3.6 you can
see that the estimator appears to be normally distributed. It in fact is normally distributed, since
the DGP (see the Octave program) has normal errors. Even when the data may be taken to be IID,
the assumption of normality is often questionable or simply untenable. For example, if the dependent
variable is the number of automobile trips per week, it is a count variable with a discrete distribution,
and is thus not normally distributed. Many variables in economics can take on only nonnegative
values, which, strictly speaking, rules out normality.2

The variance of the OLS estimator and the Gauss-Markov theorem

Now let’s make all the classical assumptions except the assumption of normality. We have β̂ =
β + (X ′X)−1X ′ε and we know that E(β̂) = β. So

V ar(β̂) = E

{(
β̂ − β

) (
β̂ − β

)′}
= E

{
(X ′X)−1X ′εε′X(X ′X)−1}

= (X ′X)−1σ2
0

2Normality may be a good model nonetheless, as long as the probability of a negative value occuring is negligable under the model. This
depends upon the mean being large enough in relation to the variance.



The OLS estimator is a linear estimator , which means that it is a linear function of the dependent
variable, y.

β̂ =
[
(X ′X)−1X ′

]
y

= Cy

where C is a function of the explanatory variables only, not the dependent variable. It is also unbiased
under the present assumptions, as we proved above. One could consider other weights W that are a
function of X that define some other linear estimator. We’ll still insist upon unbiasedness. Consider
β̃ = Wy, where W = W (X) is some k × n matrix function of X. Note that since W is a function of
X, it is nonstochastic, too. If the estimator is unbiased, then we must have WX = IK :

E(Wy) = E(WXβ0 +Wε)
= WXβ0

= β0

⇒
WX = IK

The variance of β̃ is
V (β̃) = WW ′σ2

0.

Define
D = W − (X ′X)−1X ′



so
W = D + (X ′X)−1X ′

Since WX = IK , DX = 0, so

V (β̃) =
(
D + (X ′X)−1X ′

) (
D + (X ′X)−1X ′

)′
σ2

0

=
(
DD′ + (X ′X)−1

)
σ2

0

So
V (β̃) ≥ V (β̂)

The inequality is a shorthand means of expressing, more formally, that V (β̃) − V (β̂) is a positive
semi-definite matrix. This is a proof of the Gauss-Markov Theorem. The OLS estimator is the ”best
linear unbiased estimator” (BLUE).

• It is worth emphasizing again that we have not used the normality assumption in any way to
prove the Gauss-Markov theorem, so it is valid if the errors are not normally distributed, as long
as the other assumptions hold.

To illustrate the Gauss-Markov result, consider the estimator that results from splitting the sample
into p equally-sized parts, estimating using each part of the data separately by OLS, then averaging
the p resulting estimators. You should be able to show that this estimator is unbiased, but inefficient
with respect to the OLS estimator. The program Efficiency.m illustrates this using a small Monte
Carlo experiment, which compares the OLS estimator and a 3-way split sample estimator. The data
generating process follows the classical model, with n = 21. The true parameter value is β = 2. In
Figures 3.8 and 3.9 we can see that the OLS estimator is more efficient, since the tails of its histogram

http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/Efficiency.m


Figure 3.8: Gauss-Markov Result: The OLS estimator

are more narrow.
We have that E(β̂) = β and V ar(β̂) =

(
X
′
X
)−1

σ2
0, but we still need to estimate the variance of ε,

σ2
0, in order to have an idea of the precision of the estimates of β. A commonly used estimator of σ2

0 is

σ̂2
0 = 1

n−K
ε̂′ε̂

This estimator is unbiased:



Figure 3.9: Gauss-Markov Resul: The split sample estimator



σ̂2
0 = 1

n−K
ε̂′ε̂

= 1
n−K

ε′Mε

E(σ̂2
0) = 1

n−K
E(Trε′Mε)

= 1
n−K

E(TrMεε′)

= 1
n−K

TrE(Mεε′)

= 1
n−K

σ2
0TrM

= 1
n−K

σ2
0 (n− k)

= σ2
0

where we use the fact that Tr(AB) = Tr(BA) when both products are conformable. Thus, this
estimator is also unbiased under these assumptions.

3.8 Example: The Nerlove model

Theoretical background

For a firm that takes input prices w and the output level q as given, the cost minimization problem is
to choose the quantities of inputs x to solve the problem



min
x
w′x

subject to the restriction

f(x) = q.

The solution is the vector of factor demands x(w, q). The cost function is obtained by substituting
the factor demands into the criterion function:

Cw, q) = w′x(w, q).

• Monotonicity Increasing factor prices cannot decrease cost, so

∂C(w, q)
∂w

≥ 0

Remember that these derivatives give the conditional factor demands (Shephard’s Lemma).

• Homogeneity The cost function is homogeneous of degree 1 in input prices: C(tw, q) = tC(w, q)
where t is a scalar constant. This is because the factor demands are homogeneous of degree zero
in factor prices - they only depend upon relative prices.

• Returns to scale The returns to scale parameter γ is defined as the inverse of the elasticity of
cost with respect to output:

γ =
∂C(w, q)

∂q

q

C(w, q)

−1



Constant returns to scale is the case where increasing production q implies that cost increases
in the proportion 1:1. If this is the case, then γ = 1.

Cobb-Douglas functional form

The Cobb-Douglas functional form is linear in the logarithms of the regressors and the dependent
variable. For a cost function, if there are g factors, the Cobb-Douglas cost function has the form

C = Awβ1
1 ...w

βg
g q

βqeε

What is the elasticity of C with respect to wj?

eCwj =
 ∂C
∂WJ

(wj
C

)

= βjAw
β1
1 .w

βj−1
j ..wβg

g q
βqeε

wj

Awβ1
1 ...w

βg
g qβqeε

= βj

This is one of the reasons the Cobb-Douglas form is popular - the coefficients are easy to interpret,
since they are the elasticities of the dependent variable with respect to the explanatory variable. Not
that in this case,

eCwj =
 ∂C
∂WJ

(wj
C

)

= xj(w, q)
wj
C

≡ sj(w, q)



the cost share of the jth input. So with a Cobb-Douglas cost function, βj = sj(w, q). The cost shares
are constants.

Note that after a logarithmic transformation we obtain

lnC = α + β1 lnw1 + ...+ βg lnwg + βq ln q + ε

where α = lnA . So we see that the transformed model is linear in the logs of the data.
One can verify that the property of HOD1 implies that

g∑
i=1

βg = 1

In other words, the cost shares add up to 1.
The hypothesis that the technology exhibits CRTS implies that

γ = 1
βq

= 1

so βq = 1. Likewise, monotonicity implies that the coefficients βi ≥ 0, i = 1, ..., g.

The Nerlove data and OLS

The file nerlove.data contains data on 145 electric utility companies’ cost of production, output and
input prices. The data are for the U.S., and were collected by M. Nerlove. The observations are by
row, and the columns are COMPANY, COST (C), OUTPUT (Q), PRICE OF LABOR (PL),
PRICE OF FUEL (PF ) and PRICE OF CAPITAL (PK). Note that the data are sorted by output

http://pareto.uab.es/mcreel/Econometrics/Examples/Data/nerlove.data


level (the third column).
We will estimate the Cobb-Douglas model

lnC = β1 + β2 lnQ+ β3 lnPL + β4 lnPF + β5 lnPK + ε (3.10)

using OLS. To do this yourself, you need the data file mentioned above, as well as Nerlove.m (the
estimation program), and the library of Octave functions mentioned in the introduction to Octave
that forms section 24 of this document.3

The results are

*********************************************************
OLS estimation results
Observations 145
R-squared 0.925955
Sigma-squared 0.153943

Results (Ordinary var-cov estimator)

estimate st.err. t-stat. p-value
constant -3.527 1.774 -1.987 0.049
output 0.720 0.017 41.244 0.000
labor 0.436 0.291 1.499 0.136
fuel 0.427 0.100 4.249 0.000
capital -0.220 0.339 -0.648 0.518

*********************************************************

3If you are running the bootable CD, you have all of this installed and ready to run.

http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/Nerlove.m


• Do the theoretical restrictions hold?

• Does the model fit well?

• What do you think about RTS?

While we will most often use Octave programs as examples in this document, since following the
programming statements is a useful way of learning how theory is put into practice, you may be
interested in a more ”user-friendly” environment for doing econometrics. I heartily recommend Gretl,
the Gnu Regression, Econometrics, and Time-Series Library. This is an easy to use program, available
in English, French, and Spanish, and it comes with a lot of data ready to use. It even has an option
to save output as LATEX fragments, so that I can just include the results into this document, no muss,
no fuss. Here is the Nerlove data in the form of a GRETL data set: nerlove.gdt . Here the results of
the Nerlove model from GRETL:

Model 2: OLS estimates using the 145 observations 1–145
Dependent variable: l_cost

Variable Coefficient Std. Error t-statistic p-value

const −3.5265 1.77437 −1.9875 0.0488
l_output 0.720394 0.0174664 41.2445 0.0000
l_labor 0.436341 0.291048 1.4992 0.1361
l_fuel 0.426517 0.100369 4.2495 0.0000
l_capita −0.219888 0.339429 −0.6478 0.5182

http://gretl.sourceforge.net
http://pareto.uab.es/mcreel/Econometrics/Examples/Data/nerlove.gdt


Mean of dependent variable 1.72466
S.D. of dependent variable 1.42172
Sum of squared residuals 21.5520
Standard error of residuals (σ̂) 0.392356
Unadjusted R2 0.925955
Adjusted R̄2 0.923840
F (4, 140) 437.686
Akaike information criterion 145.084
Schwarz Bayesian criterion 159.967

Fortunately, Gretl and my OLS program agree upon the results. Gretl is included in the bootable
CD mentioned in the introduction. I recommend using GRETL to repeat the examples that are done
using Octave.

The previous properties hold for finite sample sizes. Before considering the asymptotic properties
of the OLS estimator it is useful to review the MLE estimator, since under the assumption of normal
errors the two estimators coincide.

3.9 Exercises

1. Prove that the split sample estimator used to generate figure 3.9 is unbiased.

2. Calculate the OLS estimates of the Nerlove model using Octave and GRETL, and provide print-
outs of the results. Interpret the results.

3. Do an analysis of whether or not there are influential observations for OLS estimation of the



Nerlove model. Discuss.

4. Using GRETL, examine the residuals after OLS estimation and tell me whether or not you
believe that the assumption of independent identically distributed normal errors is warranted.
No need to do formal tests, just look at the plots. Print out any that you think are relevant, and
interpret them.

5. For a random vector X ∼ N(µx,Σ), what is the distribution of AX + b, where A and b are
conformable matrices of constants?

6. Using Octave, write a little program that verifies that Tr(AB) = Tr(BA) for A and B 4x4
matrices of random numbers. Note: there is an Octave function trace.

7. For the model with a constant and a single regressor, yt = β1 + β2xt + εt, which satisfies the
classical assumptions, prove that the variance of the OLS estimator declines to zero as the sample
size increases.



Chapter 4

Asymptotic properties of the least
squares estimator

The OLS estimator under the classical assumptions is BLUE1, for all sample sizes. Now let’s see what
happens when the sample size tends to infinity.

1BLUE ≡ best linear unbiased estimator if I haven’t defined it before
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4.1 Consistency

β̂ = (X ′X)−1X ′y

= (X ′X)−1X ′ (Xβ + ε)
= β0 + (X ′X)−1X ′ε

= β0 +
X ′X

n

−1
X ′ε

n

Consider the last two terms. By assumption limn→∞
(
X ′X
n

)
= QX ⇒ limn→∞

(
X ′X
n

)−1 = Q−1
X , since the

inverse of a nonsingular matrix is a continuous function of the elements of the matrix. Considering
X ′ε
n ,

X ′ε

n
= 1
n

n∑
t=1

xtεt

Each xtεt has expectation zero, so

E

X ′ε
n

 = 0

The variance of each term is

V (xtεt) = xtx
′
tσ

2.



As long as these are finite, and given a technical condition2, the Kolmogorov SLLN applies, so

1
n

n∑
t=1

xtεt
a.s.→ 0.

This implies that
β̂
a.s.→ β0.

This is the property of strong consistency: the estimator converges in almost surely to the true value.

• The consistency proof does not use the normality assumption.

• Remember that almost sure convergence implies convergence in probability.

4.2 Asymptotic normality

We’ve seen that the OLS estimator is normally distributed under the assumption of normal errors. If
the error distribution is unknown, we of course don’t know the distribution of the estimator. However,
we can get asymptotic results. Assuming the distribution of ε is unknown, but the the other classical
assumptions hold:

2For application of LLN’s and CLT’s, of which there are very many to choose from, I’m going to avoid the technicalities. Basically, as long
as terms that make up an average have finite variances and are not too strongly dependent, one will be able to find a LLN or CLT to apply.
Which one it is doesn’t matter, we only need the result.



β̂ = β0 + (X ′X)−1X ′ε

β̂ − β0 = (X ′X)−1X ′ε

√
n
(
β̂ − β0

)
=

X ′X
n

−1
X ′ε√
n

• Now as before,
(
X ′X
n

)−1 → Q−1
X .

• Considering X ′ε√
n
, the limit of the variance is

lim
n→∞V

X ′ε√
n

 = lim
n→∞E

X ′εε′X
n


= σ2

0QX

The mean is of course zero. To get asymptotic normality, we need to apply a CLT. We assume
one (for instance, the Lindeberg-Feller CLT) holds, so

X ′ε√
n

d→ N
(
0, σ2

0QX

)

Therefore,
√
n
(
β̂ − β0

)
d→ N

(
0, σ2

0Q
−1
X

)
(4.1)

• In summary, the OLS estimator is normally distributed in small and large samples if ε is normally
distributed. If ε is not normally distributed, β̂ is asymptotically normally distributed when a



CLT can be applied.

4.3 Asymptotic efficiency

The least squares objective function is

s(β) =
n∑
t=1

(yt − x′tβ)2

Supposing that ε is normally distributed, the model is

y = Xβ0 + ε,

ε ∼ N(0, σ2
0In), so

f(ε) =
n∏
t=1

1√
2πσ2

exp
− ε2

t

2σ2



The joint density for y can be constructed using a change of variables. We have ε = y−Xβ, so ∂ε
∂y′ = In

and | ∂ε∂y′ | = 1, so

f(y) =
n∏
t=1

1√
2πσ2

exp
−(yt − x′tβ)2

2σ2

 .
Taking logs,

lnL(β, σ) = −n ln
√

2π − n ln σ −
n∑
t=1

(yt − x′tβ)2

2σ2 .



Maximizing this function with respect to β and σ gives what is known as the maximum likelihood
(ML) estimator. It turns out that ML estimators are asymptotically efficient, a concept that will be
explained in detail later. It’s clear that the first order conditions for the MLE of β0 are the same as the
first order conditions that define the OLS estimator (up to multiplication by a constant), so the OLS
estimator of β is also the ML estimator. The estimators are the same, under the present assumptions.
Therefore, their properties are the same. In particular, under the classical assumptions with normality,
the OLS estimator β̂ is asymptotically efficient. Note that one needs to make an assumption about
the distribution of the errors to compute the ML estimator. If the errors had a distribution other than
the normal, then the OLS estimator and the ML estimator would not coincide.

As we’ll see later, it will be possible to use (iterated) linear estimation methods and still achieve
asymptotic efficiency even if the assumption that V ar(ε) 6= σ2In, as long as ε is still normally dis-
tributed. This is not the case if ε is nonnormal. In general with nonnormal errors it will be necessary
to use nonlinear estimation methods to achieve asymptotically efficient estimation.

4.4 Exercises

1. Write an Octave program that generates a histogram forRMonte Carlo replications of
√
n
(
β̂j − βj

)
,

where β̂ is the OLS estimator and βj is one of the k slope parameters. R should be a large number,
at least 1000. The model used to generate data should follow the classical assumptions, except
that the errors should not be normally distributed (try U(−a, a), t(p), χ2(p) − p, etc). Gener-
ate histograms for n ∈ {20, 50, 100, 1000}. Do you observe evidence of asymptotic normality?
Comment.



Chapter 5

Restrictions and hypothesis tests

5.1 Exact linear restrictions

In many cases, economic theory suggests restrictions on the parameters of a model. For example, a
demand function is supposed to be homogeneous of degree zero in prices and income. If we have a
Cobb-Douglas (log-linear) model,

ln q = β0 + β1 ln p1 + β2 ln p2 + β3 lnm+ ε,

then we need that
k0 ln q = β0 + β1 ln kp1 + β2 ln kp2 + β3 ln km+ ε,
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so

β1 ln p1 + β2 ln p2 + β3 lnm = β1 ln kp1 + β2 ln kp2 + β3 ln km
= (ln k) (β1 + β2 + β3) + β1 ln p1 + β2 ln p2 + β3 lnm.

The only way to guarantee this for arbitrary k is to set

β1 + β2 + β3 = 0,

which is a parameter restriction. In particular, this is a linear equality restriction, which is probably
the most commonly encountered case.

Imposition

The general formulation of linear equality restrictions is the model

y = Xβ + ε

Rβ = r

where R is a Q×K matrix, Q < K and r is a Q× 1 vector of constants.

• We assume R is of rank Q, so that there are no redundant restrictions.

• We also assume that ∃β that satisfies the restrictions: they aren’t infeasible.



Let’s consider how to estimate β subject to the restrictions Rβ = r. The most obvious approach is to
set up the Lagrangean

min
β
s(β) = 1

n
(y −Xβ)′ (y −Xβ) + 2λ′(Rβ − r).

The Lagrange multipliers are scaled by 2, which makes things less messy. The fonc are

Dβs(β̂, λ̂) = −2X ′y + 2X ′Xβ̂R + 2R′λ̂ ≡ 0
Dλs(β̂, λ̂) = Rβ̂R − r ≡ 0,

which can be written as  X ′X R′

R 0


 β̂R
λ̂

 =
 X ′y

r

 .
We get  β̂R

λ̂

 =
 X ′X R′

R 0


−1  X ′y

r

 .
Maybe you’re curious about how to invert a partitioned matrix? I can help you with that:



Note that
 (X ′X)−1 0
−R (X ′X)−1 IQ


 X ′X R′

R 0

 ≡ AB

=
 IK (X ′X)−1R′

0 −R (X ′X)−1R′



≡
 IK (X ′X)−1R′

0 −P


≡ C,

and
 IK (X ′X)−1R′P−1

0 −P−1


 IK (X ′X)−1R′

0 −P

 ≡ DC

= IK+Q,

so

DAB = IK+Q

DA = B−1

B−1 =
 IK (X ′X)−1R′P−1

0 −P−1


 (X ′X)−1 0
−R (X ′X)−1 IQ



=
 (X ′X)−1 − (X ′X)−1R′P−1R (X ′X)−1 (X ′X)−1R′P−1

P−1R (X ′X)−1 −P−1

 ,



If you weren’t curious about that, please start paying attention again. Also, note that we have made
the definition P = R (X ′X)−1R′)

 β̂R
λ̂

 =
 (X ′X)−1 − (X ′X)−1R′P−1R (X ′X)−1 (X ′X)−1R′P−1

P−1R (X ′X)−1 −P−1


 X ′y

r



=

 β̂ − (X ′X)−1R′P−1
(
Rβ̂ − r

)
P−1

(
Rβ̂ − r

)


=
 (IK − (X ′X)−1R′P−1R)

P−1R

 β̂ +
 (X ′X)−1R′P−1r

−P−1r



The fact that β̂R and λ̂ are linear functions of β̂ makes it easy to determine their distributions, since
the distribution of β̂ is already known. Recall that for x a random vector, and for A and b a matrix
and vector of constants, respectively, V ar (Ax+ b) = AV ar(x)A′.

Though this is the obvious way to go about finding the restricted estimator, an easier way, if the
number of restrictions is small, is to impose them by substitution. Write

y = X1β1 +X2β2 + ε[
R1 R2

]  β1

β2

 = r

where R1 is Q×Q nonsingular. Supposing the Q restrictions are linearly independent, one can always
make R1 nonsingular by reorganizing the columns of X. Then

β1 = R−1
1 r −R−1

1 R2β2.



Substitute this into the model

y = X1R
−1
1 r −X1R

−1
1 R2β2 +X2β2 + ε

y −X1R
−1
1 r =

[
X2 −X1R

−1
1 R2

]
β2 + ε

or with the appropriate definitions,
yR = XRβ2 + ε.

This model satisfies the classical assumptions, supposing the restriction is true. One can estimate by
OLS. The variance of β̂2 is as before

V (β̂2) = (X ′RXR)−1
σ2

0

and the estimator is
V̂ (β̂2) = (X ′RXR)−1

σ̂2

where one estimates σ2
0 in the normal way, using the restricted model, i.e.,

σ̂2
0 =

(
yR −XRβ̂2

)′ (
yR −XRβ̂2

)
n− (K −Q)

To recover β̂1, use the restriction. To find the variance of β̂1, use the fact that it is a linear function
of β̂2, so

V (β̂1) = R−1
1 R2V (β̂2)R′2

(
R−1

1
)′

= R−1
1 R2 (X ′2X2)−1

R′2
(
R−1

1
)′
σ2

0



Properties of the restricted estimator

We have that

β̂R = β̂ − (X ′X)−1R′P−1
(
Rβ̂ − r

)
= β̂ + (X ′X)−1R′P−1r − (X ′X)−1R′P−1R(X ′X)−1X ′y

= β + (X ′X)−1X ′ε+ (X ′X)−1R′P−1 [r −Rβ]− (X ′X)−1R′P−1R(X ′X)−1X ′ε

β̂R − β = (X ′X)−1X ′ε

+ (X ′X)−1R′P−1 [r −Rβ]
− (X ′X)−1R′P−1R(X ′X)−1X ′ε

Mean squared error is
MSE(β̂R) = E(β̂R − β)(β̂R − β)′

Noting that the crosses between the second term and the other terms expect to zero, and that the
cross of the first and third has a cancellation with the square of the third, we obtain

MSE(β̂R) = (X ′X)−1σ2

+ (X ′X)−1R′P−1 [r −Rβ] [r −Rβ]′ P−1R(X ′X)−1

− (X ′X)−1R′P−1R(X ′X)−1σ2

So, the first term is the OLS covariance. The second term is PSD, and the third term is NSD.

• If the restriction is true, the second term is 0, so we are better off. True restrictions improve
efficiency of estimation.



• If the restriction is false, we may be better or worse off, in terms of MSE, depending on the
magnitudes of r −Rβ and σ2.

5.2 Testing

In many cases, one wishes to test economic theories. If theory suggests parameter restrictions, as in
the above homogeneity example, one can test theory by testing parameter restrictions. A number of
tests are available. The first two (t and F) have a known small sample distributions, when the errors
are normally distributed. The third and fourth (Wald and score) do not require normality of the
errors, but their distributions are known only approximately, so that they are not exactly valid with
finite samples.

t-test

Suppose one has the model

y = Xβ + ε

and one wishes to test the single restriction H0 :Rβ = r vs. HA :Rβ 6= r . Under H0, with normality
of the errors,

Rβ̂ − r ∼ N
(
0, R(X ′X)−1R′σ2

0
)

so
Rβ̂ − r√

R(X ′X)−1R′σ2
0

= Rβ̂ − r
σ0
√
R(X ′X)−1R′

∼ N (0, 1) .



The problem is that σ2
0 is unknown. One could use the consistent estimator σ̂2

0 in place of σ2
0, but the

test would only be valid asymptotically in this case.

Proposition 1. N(0,1)√
χ2(q)
q

∼ t(q)

as long as the N(0, 1) and the χ2(q) are independent.

We need a few results on the χ2 distribution.

Proposition 2. If x ∼ N(µ, In) is a vector of n independent r.v.’s., then x′x ∼ χ2(n, λ) where
λ = ∑

i µ
2
i = µ′µ is the noncentrality parameter.

When a χ2 r.v. has the noncentrality parameter equal to zero, it is referred to as a central χ2 r.v.,
and it’s distribution is written as χ2(n), suppressing the noncentrality parameter.

Proposition 3. If the n dimensional random vector x ∼ N(0, V ), then x′V −1x ∼ χ2(n).

We’ll prove this one as an indication of how the following unproven propositions could be proved.
Proof: Factor V −1 as P ′P (this is the Cholesky factorization, where P is defined to be upper

triangular). Then consider y = Px. We have

y ∼ N(0, PV P ′)

but

V P ′P = In

PV P ′P = P



so PV P ′ = In and thus y ∼ N(0, In). Thus y′y ∼ χ2(n) but

y′y = x′P ′Px = xV −1x

and we get the result we wanted.
A more general proposition which implies this result is

Proposition 4. If the n dimensional random vector x ∼ N(0, V ), then x′Bx ∼ χ2(ρ(B)) if and only
if BV is idempotent.

An immediate consequence is

Proposition 5. If the random vector (of dimension n) x ∼ N(0, I), and B is idempotent with rank r,
then x′Bx ∼ χ2(r).

Consider the random variable

ε̂′ε̂

σ2
0

= ε′MXε

σ2
0

=
(
ε

σ0

)′
MX

(
ε

σ0

)
∼ χ2(n−K)

Proposition 6. If the random vector (of dimension n) x ∼ N(0, I), then Ax and x′Bx are independent
if AB = 0.

Now consider (remember that we have only one restriction in this case)



Rβ̂−r
σ0
√
R(X ′X)−1R′√

ε̂′ε̂
(n−K)σ2

0

= Rβ̂ − r
σ̂0
√
R(X ′X)−1R′

This will have the t(n−K) distribution if β̂ and ε̂′ε̂ are independent. But β̂ = β + (X ′X)−1X ′ε and

(X ′X)−1X ′MX = 0,

so
Rβ̂ − r

σ̂0
√
R(X ′X)−1R′

= Rβ̂ − r
σ̂Rβ̂

∼ t(n−K)

In particular, for the commonly encountered test of significance of an individual coefficient, for which
H0 : βi = 0 vs. H0 : βi 6= 0 , the test statistic is

β̂i
σ̂β̂i
∼ t(n−K)

• Note: the t− test is strictly valid only if the errors are actually normally distributed. If one
has nonnormal errors, one could use the above asymptotic result to justify taking critical values
from the N(0, 1) distribution, since t(n −K) d→ N(0, 1) as n → ∞. In practice, a conservative
procedure is to take critical values from the t distribution if nonnormality is suspected. This will
reject H0 less often since the t distribution is fatter-tailed than is the normal.



F test

The F test allows testing multiple restrictions jointly.

Proposition 7. If x ∼ χ2(r) and y ∼ χ2(s), then x/r
y/s ∼ F (r, s), provided that x and y are independent.

Proposition 8. If the random vector (of dimension n) x ∼ N(0, I), then x′Ax
and x′Bx are independent if AB = 0.

Using these results, and previous results on the χ2 distribution, it is simple to show that the
following statistic has the F distribution:

F =

(
Rβ̂ − r

)′ (
R (X ′X)−1R′

)−1 (
Rβ̂ − r

)
qσ̂2 ∼ F (q, n−K).

A numerically equivalent expression is

(ESSR − ESSU) /q
ESSU/(n−K) ∼ F (q, n−K).

• Note: The F test is strictly valid only if the errors are truly normally distributed. The following
tests will be appropriate when one cannot assume normally distributed errors.

Wald-type tests

The t and F tests require normality of the errors. The Wald test does not, but it is an asymptotic
test - it is only approximately valid in finite samples.



The Wald principle is based on the idea that if a restriction is true, the unrestricted model should
“approximately” satisfy the restriction. Given that the least squares estimator is asymptotically nor-
mally distributed:

√
n
(
β̂ − β0

)
d→ N

(
0, σ2

0Q
−1
X

)
then under H0 : Rβ0 = r, we have

√
n
(
Rβ̂ − r

)
d→ N

(
0, σ2

0RQ
−1
X R′

)

so by Proposition [3]
n
(
Rβ̂ − r

)′ (
σ2

0RQ
−1
X R′

)−1 (
Rβ̂ − r

)
d→ χ2(q)

Note that Q−1
X or σ2

0 are not observable. The test statistic we use substitutes the consistent estimators.
Use (X ′X/n)−1 as the consistent estimator of Q−1

X . With this, there is a cancellation of n′s, and the
statistic to use is (

Rβ̂ − r
)′ (

σ̂2
0R(X ′X)−1R′

)−1 (
Rβ̂ − r

)
d→ χ2(q)

• The Wald test is a simple way to test restrictions without having to estimate the restricted
model.

• Note that this formula is similar to one of the formulae provided for the F test.

Score-type tests (Rao tests, Lagrange multiplier tests)

The score test is another asymptotically valid test that does not require normality of the errors.
In some cases, an unrestricted model may be nonlinear in the parameters, but the model is linear



in the parameters under the null hypothesis. For example, the model

y = (Xβ)γ + ε

is nonlinear in β and γ, but is linear in β under H0 : γ = 1. Estimation of nonlinear models is a bit
more complicated, so one might prefer to have a test based upon the restricted, linear model. The
score test is useful in this situation.

• Score-type tests are based upon the general principle that the gradient vector of the unrestricted
model, evaluated at the restricted estimate, should be asymptotically normally distributed with
mean zero, if the restrictions are true. The original development was for ML estimation, but the
principle is valid for a wide variety of estimation methods.

We have seen that

λ̂ =
(
R(X ′X)−1R′

)−1 (
Rβ̂ − r

)
= P−1

(
Rβ̂ − r

)

so
√
nP̂λ =

√
n
(
Rβ̂ − r

)
Given that

√
n
(
Rβ̂ − r

)
d→ N

(
0, σ2

0RQ
−1
X R′

)
under the null hypothesis, we obtain

√
nP̂λ

d→ N
(
0, σ2

0RQ
−1
X R′

)



So (√
nP̂λ

)′ (
σ2

0RQ
−1
X R′

)−1 (√
nP̂λ

)
d→ χ2(q)

Noting that limnP = RQ−1
X R′, we obtain,

λ̂′
R(X ′X)−1R′

σ2
0

 λ̂ d→ χ2(q)

since the powers of n cancel. To get a usable test statistic substitute a consistent estimator of σ2
0.

• This makes it clear why the test is sometimes referred to as a Lagrange multiplier test. It
may seem that one needs the actual Lagrange multipliers to calculate this. If we impose the
restrictions by substitution, these are not available. Note that the test can be written as

(
R′λ̂

)′
(X ′X)−1R′λ̂

σ2
0

d→ χ2(q)

However, we can use the fonc for the restricted estimator:

−X ′y +X ′Xβ̂R +R′λ̂

to get that

R′λ̂ = X ′(y −Xβ̂R)
= X ′ε̂R



Substituting this into the above, we get

ε̂′RX(X ′X)−1X ′ε̂R
σ2

0

d→ χ2(q)

but this is simply
ε̂′R
PX
σ2

0
ε̂R

d→ χ2(q).

To see why the test is also known as a score test, note that the fonc for restricted least squares

−X ′y +X ′Xβ̂R +R′λ̂

give us
R′λ̂ = X ′y −X ′Xβ̂R

and the rhs is simply the gradient (score) of the unrestricted model, evaluated at the restricted esti-
mator. The scores evaluated at the unrestricted estimate are identically zero. The logic behind the
score test is that the scores evaluated at the restricted estimate should be approximately zero, if the
restriction is true. The test is also known as a Rao test, since P. Rao first proposed it in 1948.



5.3 The asymptotic equivalence of the LR, Wald and score
tests

Note: the discussion of the LR test has been moved forward in these notes. I no longer teach the
material in this section, but I’m leaving it here for reference.

We have seen that the three tests all converge to χ2 random variables. In fact, they all converge to
the same χ2 rv, under the null hypothesis. We’ll show that the Wald and LR tests are asymptotically
equivalent. We have seen that the Wald test is asymptotically equivalent to

W
a= n

(
Rβ̂ − r

)′ (
σ2

0RQ
−1
X R′

)−1 (
Rβ̂ − r

)
d→ χ2(q) (5.1)

Using
β̂ − β0 = (X ′X)−1X ′ε

and
Rβ̂ − r = R(β̂ − β0)

we get

√
nR(β̂ − β0) =

√
nR(X ′X)−1X ′ε

= R

X ′X
n

−1

n−1/2X ′ε



Substitute this into [5.1] to get

W
a= n−1ε′XQ−1

X R′
(
σ2

0RQ
−1
X R′

)−1
RQ−1

X X ′ε
a= ε′X(X ′X)−1R′

(
σ2

0R(X ′X)−1R′
)−1

R(X ′X)−1X ′ε

a= ε′A(A′A)−1A′ε

σ2
0

a= ε′PRε

σ2
0

where PR is the projection matrix formed by the matrix X(X ′X)−1R′.

• Note that this matrix is idempotent and has q columns, so the projection matrix has rank q.

Now consider the likelihood ratio statistic

LR
a= n1/2g(θ0)′I(θ0)−1R′

(
RI(θ0)−1R′

)−1
RI(θ0)−1n1/2g(θ0) (5.2)

Under normality, we have seen that the likelihood function is

lnL(β, σ) = −n ln
√

2π − n ln σ − 1
2

(y −Xβ)′ (y −Xβ)
σ2 .



Using this,

g(β0) ≡ Dβ
1
n

lnL(β, σ)

= X ′(y −Xβ0)
nσ2

= X ′ε

nσ2

Also, by the information matrix equality:

I(θ0) = −H∞(θ0)
= lim−Dβ′g(β0)

= lim−Dβ′
X ′(y −Xβ0)

nσ2

= lim X ′X

nσ2

= QX

σ2

so
I(θ0)−1 = σ2Q−1

X



Substituting these last expressions into [5.2], we get

LR
a= ε′X ′(X ′X)−1R′

(
σ2

0R(X ′X)−1R′
)−1

R(X ′X)−1X ′ε

a= ε′PRε

σ2
0

a= W

This completes the proof that the Wald and LR tests are asymptotically equivalent. Similarly, one
can show that, under the null hypothesis,

qF
a= W

a= LM
a= LR

• The proof for the statistics except for LR does not depend upon normality of the errors, as can
be verified by examining the expressions for the statistics.

• The LR statistic is based upon distributional assumptions, since one can’t write the likelihood
function without them.

• However, due to the close relationship between the statistics qF and LR, supposing normality,
the qF statistic can be thought of as a pseudo-LR statistic, in that it’s like a LR statistic in
that it uses the value of the objective functions of the restricted and unrestricted models, but it
doesn’t require distributional assumptions.

• The presentation of the score and Wald tests has been done in the context of the linear model.
This is readily generalizable to nonlinear models and/or other estimation methods.

Though the four statistics are asymptotically equivalent, they are numerically different in small sam-



ples. The numeric values of the tests also depend upon how σ2 is estimated, and we’ve already seen
than there are several ways to do this. For example all of the following are consistent for σ2 under H0

ε̂′ε̂
n−k
ε̂′ε̂
n

ε̂′Rε̂R
n−k+q
ε̂′Rε̂R
n

and in general the denominator call be replaced with any quantity a such that lim a/n = 1.
It can be shown, for linear regression models subject to linear restrictions, and if ε̂′ε̂

n is used to
calculate the Wald test and ε̂′Rε̂R

n is used for the score test, that

W > LR > LM.

For this reason, the Wald test will always reject if the LR test rejects, and in turn the LR test
rejects if the LM test rejects. This is a bit problematic: there is the possibility that by careful
choice of the statistic used, one can manipulate reported results to favor or disfavor a hypothesis. A
conservative/honest approach would be to report all three test statistics when they are available. In the
case of linear models with normal errors the F test is to be preferred, since asymptotic approximations
are not an issue.

The small sample behavior of the tests can be quite different. The true size (probability of rejection
of the null when the null is true) of the Wald test is often dramatically higher than the nominal size
associated with the asymptotic distribution. Likewise, the true size of the score test is often smaller



than the nominal size.

5.4 Interpretation of test statistics

Now that we have a menu of test statistics, we need to know how to use them.

5.5 Confidence intervals

Confidence intervals for single coefficients are generated in the normal manner. Given the t statistic

t(β) = β̂ − β
σ̂β̂

a 100 (1− α) % confidence interval for β0 is defined by the bounds of the set of β such that t(β) does
not reject H0 : β0 = β, using a α significance level:

C(α) = {β : −cα/2 <
β̂ − β
σ̂β̂

< cα/2}

The set of such β is the interval
β̂ ± σ̂β̂cα/2

A confidence ellipse for two coefficients jointly would be, analogously, the set of {β1, β2} such that
the F (or some other test statistic) doesn’t reject at the specified critical value. This generates an
ellipse, if the estimators are correlated.



Figure 5.1: Joint and Individual Confidence Regions



• The region is an ellipse, since the CI for an individual coefficient defines a (infinitely long)
rectangle with total prob. mass 1− α, since the other coefficient is marginalized (e.g., can take
on any value). Since the ellipse is bounded in both dimensions but also contains mass 1− α, it
must extend beyond the bounds of the individual CI.

• From the pictue we can see that:

– Rejection of hypotheses individually does not imply that the joint test will reject.

– Joint rejection does not imply individal tests will reject.

5.6 Bootstrapping

When we rely on asymptotic theory to use the normal distribution-based tests and confidence intervals,
we’re often at serious risk of making important errors. If the sample size is small and errors are highly
nonnormal, the small sample distribution of

√
n
(
β̂ − β0

)
may be very different than its large sample

distribution. Also, the distributions of test statistics may not resemble their limiting distributions
at all. A means of trying to gain information on the small sample distribution of test statistics and
estimators is the bootstrap. We’ll consider a simple example, just to get the main idea.

Suppose that

y = Xβ0 + ε

ε ∼ IID(0, σ2
0)

X is nonstochastic



Given that the distribution of ε is unknown, the distribution of β̂ will be unknown in small samples.
However, since we have random sampling, we could generate artificial data. The steps are:

1. Draw n observations from ε̂ with replacement. Call this vector ε̃j (it’s a n× 1).

2. Then generate the data by ỹj = Xβ̂ + ε̃j

3. Now take this and estimate
β̃j = (X ′X)−1X ′ỹj.

4. Save β̃j

5. Repeat steps 1-4, until we have a large number, J, of β̃j.

With this, we can use the replications to calculate the empirical distribution of β̃j. One way to form a
100(1-α)% confidence interval for β0 would be to order the β̃j from smallest to largest, and drop the
first and last Jα/2 of the replications, and use the remaining endpoints as the limits of the CI. Note
that this will not give the shortest CI if the empirical distribution is skewed.

• Suppose one was interested in the distribution of some function of β̂, for example a test statistic.
Simple: just calculate the transformation for each j, and work with the empirical distribution of
the transformation.

• If the assumption of iid errors is too strong (for example if there is heteroscedasticity or au-
tocorrelation, see below) one can work with a bootstrap defined by sampling from (y, x) with
replacement.



• How to choose J : J should be large enough that the results don’t change with repetition of the
entire bootstrap. This is easy to check. If you find the results change a lot, increase J and try
again.

• The bootstrap is based fundamentally on the idea that the empirical distribution of the sample
data converges to the actual sampling distribution as n becomes large, so statistics based on
sampling from the empirical distribution should converge in distribution to statistics based on
sampling from the actual sampling distribution.

• In finite samples, this doesn’t hold. At a minimum, the bootstrap is a good way to check if
asymptotic theory results offer a decent approximation to the small sample distribution.

• Bootstrapping can be used to test hypotheses. Basically, use the bootstrap to get an approxima-
tion to the empirical distribution of the test statistic under the alternative hypothesis, and use
this to get critical values. Compare the test statistic calculated using the real data, under the
null, to the bootstrap critical values. There are many variations on this theme, which we won’t
go into here.

5.7 Wald test for nonlinear restrictions: the delta method

Testing nonlinear restrictions of a linear model is not much more difficult, at least when the model is
linear. Since estimation subject to nonlinear restrictions requires nonlinear estimation methods, which
are beyond the score of this course, we’ll just consider the Wald test for nonlinear restrictions on a
linear model.



Consider the q nonlinear restrictions
r(β0) = 0.

where r(·) is a q-vector valued function. Write the derivative of the restriction evaluated at β as

Dβ′r(β)|β = R(β)

We suppose that the restrictions are not redundant in a neighborhood of β0, so that

ρ(R(β)) = q

in a neighborhood of β0. Take a first order Taylor’s series expansion of r(β̂) about β0:

r(β̂) = r(β0) +R(β∗)(β̂ − β0)

where β∗ is a convex combination of β̂ and β0. Under the null hypothesis we have

r(β̂) = R(β∗)(β̂ − β0)

Due to consistency of β̂ we can replace β∗ by β0, asymptotically, so

√
nr(β̂) a=

√
nR(β0)(β̂ − β0)

We’ve already seen the distribution of
√
n(β̂ − β0). Using this we get

√
nr(β̂) d→ N

(
0, R(β0)Q−1

X R(β0)′σ2
0
)
.



Considering the quadratic form

nr(β̂)′
(
R(β0)Q−1

X R(β0)′
)−1

r(β̂)
σ2

0

d→ χ2(q)

under the null hypothesis. Substituting consistent estimators for β0,QX and σ2
0, the resulting statistic

is
r(β̂)′

(
R(β̂)(X ′X)−1R(β̂)′

)−1
r(β̂)

σ̂2
d→ χ2(q)

under the null hypothesis.

• This is known in the literature as the delta method, or as Klein’s approximation.

• Since this is a Wald test, it will tend to over-reject in finite samples. The score and LR tests are
also possibilities, but they require estimation methods for nonlinear models, which aren’t in the
scope of this course.

Note that this also gives a convenient way to estimate nonlinear functions and associated asymptotic
confidence intervals. If the nonlinear function r(β0) is not hypothesized to be zero, we just have

√
n
(
r(β̂)− r(β0)

)
d→ N

(
0, R(β0)Q−1

X R(β0)′σ2
0
)

so an approximation to the distribution of the function of the estimator is

r(β̂) ≈ N(r(β0), R(β0)(X ′X)−1R(β0)′σ2
0)



For example, the vector of elasticities of a function f(x) is

η(x) = ∂f(x)
∂x

� x

f(x)

where � means element-by-element multiplication. Suppose we estimate a linear function

y = x′β + ε.

The elasticities of y w.r.t. x are
η(x) = β

x′β
� x

(note that this is the entire vector of elasticities). The estimated elasticities are

η̂(x) = β̂

x′β̂
� x

To calculate the estimated standard errors of all five elasticites, use

R(β) = ∂η(x)
∂β′

=



x1 0 · · · 0
0 x2

...
... . . . 0
0 · · · 0 xk


x′β −



β1x
2
1 0 · · · 0

0 β2x
2
2

...
... . . . 0
0 · · · 0 βkx

2
k


(x′β)2 .



To get a consistent estimator just substitute in β̂. Note that the elasticity and the standard error are
functions of x. The program ExampleDeltaMethod.m shows how this can be done.

In many cases, nonlinear restrictions can also involve the data, not just the parameters. For
example, consider a model of expenditure shares. Let x(p,m) be a demand funcion, where p is prices
and m is income. An expenditure share system for G goods is

si(p,m) = pixi(p,m)
m

, i = 1, 2, ..., G.

Now demand must be positive, and we assume that expenditures sum to income, so we have the
restrictions

0 ≤ si(p,m) ≤ 1, ∀i
G∑
i=1

si(p,m) = 1

Suppose we postulate a linear model for the expenditure shares:

si(p,m) = βi1 + p′βip +mβim + εi

It is fairly easy to write restrictions such that the shares sum to one, but the restriction that the shares
lie in the [0, 1] interval depends on both parameters and the values of p and m. It is impossible to
impose the restriction that 0 ≤ si(p,m) ≤ 1 for all possible p and m. In such cases, one might consider
whether or not a linear model is a reasonable specification.

http://pareto.uab.es/mcreel/Econometrics/Examples/Restrictions/ExampleDeltaMethod.m


5.8 Example: the Nerlove data

Remember that we in a previous example (section 3.8) that the OLS results for the Nerlove model are

*********************************************************
OLS estimation results
Observations 145
R-squared 0.925955
Sigma-squared 0.153943

Results (Ordinary var-cov estimator)

estimate st.err. t-stat. p-value
constant -3.527 1.774 -1.987 0.049
output 0.720 0.017 41.244 0.000
labor 0.436 0.291 1.499 0.136
fuel 0.427 0.100 4.249 0.000
capital -0.220 0.339 -0.648 0.518

*********************************************************

Note that sK = βK < 0, and that βL + βF + βK 6= 1.
Remember that if we have constant returns to scale, then βQ = 1, and if there is homogeneity

of degree 1 then βL + βF + βK = 1. We can test these hypotheses either separately or jointly.
NerloveRestrictions.m imposes and tests CRTS and then HOD1. From it we obtain the results that
follow:

http://pareto.uab.es/mcreel/Econometrics/Examples/Restrictions/NerloveRestrictions.m


Imposing and testing HOD1

*******************************************************
Restricted LS estimation results
Observations 145
R-squared 0.925652
Sigma-squared 0.155686

estimate st.err. t-stat. p-value
constant -4.691 0.891 -5.263 0.000
output 0.721 0.018 41.040 0.000
labor 0.593 0.206 2.878 0.005
fuel 0.414 0.100 4.159 0.000
capital -0.007 0.192 -0.038 0.969

*******************************************************
Value p-value

F 0.574 0.450
Wald 0.594 0.441
LR 0.593 0.441
Score 0.592 0.442

Imposing and testing CRTS



*******************************************************
Restricted LS estimation results
Observations 145
R-squared 0.790420
Sigma-squared 0.438861

estimate st.err. t-stat. p-value
constant -7.530 2.966 -2.539 0.012
output 1.000 0.000 Inf 0.000
labor 0.020 0.489 0.040 0.968
fuel 0.715 0.167 4.289 0.000
capital 0.076 0.572 0.132 0.895

*******************************************************
Value p-value

F 256.262 0.000
Wald 265.414 0.000
LR 150.863 0.000
Score 93.771 0.000

Notice that the input price coefficients in fact sum to 1 when HOD1 is imposed. HOD1 is not
rejected at usual significance levels (e.g., α = 0.10). Also, R2 does not drop much when the restriction



is imposed, compared to the unrestricted results. For CRTS, you should note that βQ = 1, so the
restriction is satisfied. Also note that the hypothesis that βQ = 1 is rejected by the test statistics at all
reasonable significance levels. Note that R2 drops quite a bit when imposing CRTS. If you look at the
unrestricted estimation results, you can see that a t-test for βQ = 1 also rejects, and that a confidence
interval for βQ does not overlap 1.

From the point of view of neoclassical economic theory, these results are not anomalous: HOD1 is
an implication of the theory, but CRTS is not.

Exercise 9. Modify the NerloveRestrictions.m program to impose and test the restrictions jointly.

The Chow test Since CRTS is rejected, let’s examine the possibilities more carefully. Recall that
the data is sorted by output (the third column). Define 5 subsamples of firms, with the first group
being the 29 firms with the lowest output levels, then the next 29 firms, etc. The five subsamples can
be indexed by j = 1, 2, ..., 5, where j = 1 for t = 1, 2, ...29, j = 2 for t = 30, 31, ...58, etc. Define



dummy variables D1, D2, ..., D5 where

D1 =


1 t ∈ {1, 2, ...29}

0 t /∈ {1, 2, ...29}

D2 =


1 t ∈ {30, 31, ...58}

0 t /∈ {30, 31, ...58}
...

D5 =


1 t ∈ {117, 118, ..., 145}

0 t /∈ {117, 118, ..., 145}

Define the model

lnCt =
5∑
j=1

α1Dj +
5∑
j=1

γjDj lnQt +
5∑
j=1

βLjDj lnPLt +
5∑
j=1

βFjDj lnPFt +
5∑
j=1

βKjDj lnPKt + εt (5.3)

Note that the first column of nerlove.data indicates this way of breaking up the sample, and provides
and easy way of defining the dummy variables. The new model may be written as



y1

y2
...

y5


=



X1 0 · · · 0
0 X2
... X3

X4 0
0 X5





β1

β2

β5


+



ε1

ε2

...

ε5


(5.4)



where y1 is 29×1, X1 is 29×5, βj is the 5 × 1 vector of coefficients for the jth subsample (e.g.,
β1 = (α1, γ1, βL1, βF1, βK1)′), and εj is the 29× 1 vector of errors for the jth subsample.

The Octave program Restrictions/ChowTest.m estimates the above model. It also tests the hy-
pothesis that the five subsamples share the same parameter vector, or in other words, that there is
coefficient stability across the five subsamples. The null to test is that the parameter vectors for the
separate groups are all the same, that is,

β1 = β2 = β3 = β4 = β5

This type of test, that parameters are constant across different sets of data, is sometimes referred to
as a Chow test.

• There are 20 restrictions. If that’s not clear to you, look at the Octave program.

• The restrictions are rejected at all conventional significance levels.

Since the restrictions are rejected, we should probably use the unrestricted model for analysis. What
is the pattern of RTS as a function of the output group (small to large)? Figure 5.2 plots RTS. We
can see that there is increasing RTS for small firms, but that RTS is approximately constant for large
firms.

5.9 Exercises

1. Using the Chow test on the Nerlove model, we reject that there is coefficient stability across the
5 groups. But perhaps we could restrict the input price coefficients to be the same but let the

http://pareto.uab.es/mcreel/Econometrics/Examples/Restrictions/ChowTest.m


Figure 5.2: RTS as a function of firm size
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constant and output coefficients vary by group size. This new model is

lnC =
5∑
j=1

αjDj +
5∑
j=1

γjDj lnQ+ βL lnPL + βF lnPF + βK lnPK + ε (5.5)

(a) estimate this model by OLS, giving R2, estimated standard errors for coefficients, t-statistics
for tests of significance, and the associated p-values. Interpret the results in detail.

(b) Test the restrictions implied by this model (relative to the model that lets all coefficients
vary across groups) using the F, qF, Wald, score and likelihood ratio tests. Comment on
the results.

(c) Estimate this model but imposing the HOD1 restriction, using an OLS estimation pro-
gram. Don’t use mc_olsr or any other restricted OLS estimation program. Give estimated
standard errors for all coefficients.

(d) Plot the estimated RTS parameters as a function of firm size. Compare the plot to that
given in the notes for the unrestricted model. Comment on the results.

2. For the model of the above question, compute 95% confidence intervals for RTS for each of the
5 groups of firms, using the delta method to compute standard errors. Comment on the results.

3. Perform a Monte Carlo study that generates data from the model

y = −2 + 1x2 + 1x3 + ε

where the sample size is 30, x2 and x3 are independently uniformly distributed on [0, 1] and
ε ∼ IIN(0, 1)



(a) Compare the means and standard errors of the estimated coefficients using OLS and re-
stricted OLS, imposing the restriction that β2 + β3 = 2.

(b) Compare the means and standard errors of the estimated coefficients using OLS and re-
stricted OLS, imposing the restriction that β2 + β3 = 1.

(c) Discuss the results.



Chapter 6

Stochastic regressors

Up to now we have treated the regressors as fixed, which is clearly unrealistic. Now we will assume
they are random. There are several ways to think of the problem. First, if we are interested in an
analysis conditional on the explanatory variables, then it is irrelevant if they are stochastic or not,
since conditional on the values of they regressors take on, they are nonstochastic, which is the case
already considered.

• In cross-sectional analysis it is usually reasonable to make the analysis conditional on the regres-
sors.

• In dynamic models, where yt may depend on yt−1, a conditional analysis is not sufficiently
general, since we may want to predict into the future many periods out, so we need to consider
the behavior of β̂ and the relevant test statistics unconditional on X.

The model we’ll deal will involve a combination of the following assumptions
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Assumption 10. Linearity: the model is a linear function of the parameter vector β0 :

yt = x′tβ0 + εt,

or in matrix form,
y = Xβ0 + ε,

where y is n× 1, X =
(
x1 x2 · · · xn

)′
, where xt is K × 1, and β0 and ε are conformable.

Assumption 11. Stochastic, linearly independent regressors
X has rank K with probability 1
X is stochastic
limn→∞ Pr

( 1
nX

′X = QX

)
= 1, where QX is a finite positive definite matrix.

Assumption 12. Central limit theorem
n−1/2X ′ε

d→ N(0, QXσ
2
0)

Assumption 13. Normality (Optional): ε|X ∼ N(0, σ2In): ε is normally distributed

Assumption 14. Strongly exogenous regressors. The regressors X are strongly exogenous if

E(εt|X) = 0,∀t (6.1)



Assumption 15. Weakly exogenous regressors: The regressors are weakly exogenous if

E(εt|xt) = 0,∀t

In both cases, x′tβ is the conditional mean of yt given xt: E(yt|xt) = x′tβ

6.1 Case 1

Normality of ε, strongly exogenous regressors
In this case,

β̂ = β0 + (X ′X)−1X ′ε

E(β̂|X) = β0 + (X ′X)−1X ′E(ε|X)
= β0

and since this holds for all X, E(β̂) = β, unconditional on X. Likewise,

β̂|X ∼ N
(
β, (X ′X)−1σ2

0
)

• If the density of X is dµ(X), the marginal density of β̂ is obtained by multiplying the conditional
density by dµ(X) and integrating over X. Doing this leads to a nonnormal density for β̂, in small
samples.



• However, conditional on X, the usual test statistics have the t, F and χ2 distributions. Impor-
tantly, these distributions don’t depend on X, so when marginalizing to obtain the unconditional
distribution, nothing changes. The tests are valid in small samples.

• Summary: When X is stochastic but strongly exogenous and ε is normally distributed:

1. β̂ is unbiased

2. β̂ is nonnormally distributed

3. The usual test statistics have the same distribution as with nonstochastic X.

4. The Gauss-Markov theorem still holds, since it holds conditionally on X, and this is true
for all X.

5. Asymptotic properties are treated in the next section.

6.2 Case 2

ε nonnormally distributed, strongly exogenous regressors
The unbiasedness of β̂ carries through as before. However, the argument regarding test statistics

doesn’t hold, due to nonnormality of ε. Still, we have

β̂ = β0 + (X ′X)−1X ′ε

= β0 +
X ′X

n

−1
X ′ε

n



Now X ′X
n

−1
p→ Q−1

X

by assumption, and
X ′ε

n
= n−1/2X ′ε√

n

p→ 0

since the numerator converges to a N(0, QXσ
2) r.v. and the denominator still goes to infinity. We

have unbiasedness and the variance disappearing, so, the estimator is consistent:

β̂
p→ β0.

Considering the asymptotic distribution

√
n
(
β̂ − β0

)
=
√
n

X ′X
n

−1
X ′ε

n

=
X ′X

n

−1

n−1/2X ′ε

so
√
n
(
β̂ − β0

)
d→ N(0, Q−1

X σ2
0)

directly following the assumptions. Asymptotic normality of the estimator still holds. Since the asymp-
totic results on all test statistics only require this, all the previous asymptotic results on test statistics
are also valid in this case.

• Summary: Under strongly exogenous regressors, with ε normal or nonnormal, β̂ has the proper-



ties:

1. Unbiasedness

2. Consistency

3. Gauss-Markov theorem holds, since it holds in the previous case and doesn’t depend on
normality.

4. Asymptotic normality

5. Tests are asymptotically valid

6. Tests are not valid in small samples if the error is normally distributed

6.3 Case 3

Weakly exogenous regressors
An important class of models are dynamic models, where lagged dependent variables have an impact

on the current value. A simple version of these models that captures the important points is

yt = z′tα +
p∑
s=1

γsyt−s + εt

= x′tβ + εt

where now xt contains lagged dependent variables. Clearly, even with E(εt|xt) = 0, X and ε are not
uncorrelated, so one can’t show unbiasedness. For example,

E(εt−1xt) 6= 0



since xt contains yt−1 (which is a function of εt−1) as an element.

• This fact implies that all of the small sample properties such as unbiasedness, Gauss-Markov
theorem, and small sample validity of test statistics do not hold in this case. Recall Figure 3.7.
This is a case of weakly exogenous regressors, and we see that the OLS estimator is biased in
this case.

• Nevertheless, under the above assumptions, all asymptotic properties continue to hold, using the
same arguments as before.

6.4 When are the assumptions reasonable?

The two assumptions we’ve added are

1. limn→∞ Pr
( 1
nX

′X = QX

)
= 1, a QX finite positive definite matrix.

2. n−1/2X ′ε
d→ N(0, QXσ

2
0)

The most complicated case is that of dynamic models, since the other cases can be treated as nested
in this case. There exist a number of central limit theorems for dependent processes, many of which
are fairly technical. We won’t enter into details (see Hamilton, Chapter 7 if you’re interested). A main
requirement for use of standard asymptotics for a dependent sequence

{st} = {1
n

n∑
t=1

zt}

to converge in probability to a finite limit is that zt be stationary, in some sense.



• Strong stationarity requires that the joint distribution of the set

{zt, zt+s, zt−q, ...}

not depend on t.

• Covariance (weak) stationarity requires that the first and second moments of this set not depend
on t.

• An example of a sequence that doesn’t satisfy this is an AR(1) process with a unit root (a random
walk):

xt = xt−1 + εt

εt ∼ IIN(0, σ2)

One can show that the variance of xt depends upon t in this case, so it’s not weakly stationary.

• The series sin t+ εt has a first moment that depends upon t, so it’s not weakly stationary either.

Stationarity prevents the process from trending off to plus or minus infinity, and prevents cyclical
behavior which would allow correlations between far removed zt znd zs to be high. Draw a picture
here.

• In summary, the assumptions are reasonable when the stochastic conditioning variables have
variances that are finite, and are not too strongly dependent. The AR(1) model with unit root
is an example of a case where the dependence is too strong for standard asymptotics to apply.



• The study of nonstationary processes is an important part of econometrics, but it isn’t in the
scope of this course.

6.5 Exercises

1. Show that for two random variables A and B, if E(A|B) = 0, then E (Af(B)) = 0. How is this
used in the proof of the Gauss-Markov theorem?

2. Is it possible for an AR(1) model for time series data, e.g., yt = 0 + 0.9yt−1 + εt satisfy weak
exogeneity? Strong exogeneity? Discuss.



Chapter 7

Data problems

In this section we’ll consider problems associated with the regressor matrix: collinearity, missing
observations and measurement error.

7.1 Collinearity

Motivation: Data on Mortality and Related Factors

The data set mortality.data contains annual data from 1947 - 1980 on death rates in the U.S., along
with data on factors like smoking and consumption of alcohol. The data description is:

DATA4-7: Death rates in the U.S. due to coronary heart disease and their
determinants. Data compiled by Jennifer Whisenand

• chd = death rate per 100,000 population (Range 321.2 - 375.4)
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• cal = Per capita consumption of calcium per day in grams (Range 0.9 - 1.06)

• unemp = Percent of civilian labor force unemployed in 1,000 of persons 16 years and older (Range
2.9 - 8.5)

• cig = Per capita consumption of cigarettes in pounds of tobacco by persons 18 years and older–
approx. 339 cigarettes per pound of tobacco (Range 6.75 - 10.46)

• edfat = Per capita intake of edible fats and oil in pounds–includes lard, margarine and butter
(Range 42 - 56.5)

• meat = Per capita intake of meat in pounds–includes beef, veal, pork, lamb and mutton (Range
138 - 194.8)

• spirits = Per capita consumption of distilled spirits in taxed gallons for individuals 18 and older
(Range 1 - 2.9)

• beer = Per capita consumption of malted liquor in taxed gallons for individuals 18 and older
(Range 15.04 - 34.9)

• wine = Per capita consumption of wine measured in taxed gallons for individuals 18 and older
(Range 0.77 - 2.65)



Consider estimation results for several models:

ĉhd = 334.914
(58.939)

+ 5.41216
(5.156)

cig + 36.8783
(7.373)

spirits− 5.10365
(1.2513)

beer

+ 13.9764
(12.735)

wine

T = 34 R̄2 = 0.5528 F (4, 29) = 11.2 σ̂ = 9.9945
(standard errors in parentheses)

ĉhd = 353.581
(56.624)

+ 3.17560
(4.7523)

cig + 38.3481
(7.275)

spirits− 4.28816
(1.0102)

beer

T = 34 R̄2 = 0.5498 F (3, 30) = 14.433 σ̂ = 10.028
(standard errors in parentheses)

ĉhd = 243.310
(67.21)

+ 10.7535
(6.1508)

cig + 22.8012
(8.0359)

spirits− 16.8689
(12.638)

wine

T = 34 R̄2 = 0.3198 F (3, 30) = 6.1709 σ̂ = 12.327
(standard errors in parentheses)



ĉhd = 181.219
(49.119)

+ 16.5146
(4.4371)

cig + 15.8672
(6.2079)

spirits

T = 34 R̄2 = 0.3026 F (2, 31) = 8.1598 σ̂ = 12.481
(standard errors in parentheses)

Note how the signs of the coefficients change depending on the model, and that the magnitudes of
the parameter estimates vary a lot, too. The parameter estimates are highly sensitive to the particular
model we estimate. Why? We’ll see that the problem is that the data exhibit collinearity.

Collinearity: definition

Collinearity is the existence of linear relationships amongst the regressors. We can always write

λ1x1 + λ2x2 + · · ·+ λKxK + v = 0

where xi is the ith column of the regressor matrix X, and v is an n× 1 vector. In the case that there
exists collinearity, the variation in v is relatively small, so that there is an approximately exact linear
relation between the regressors.

• “relative” and “approximate” are imprecise, so it’s difficult to define when collinearilty exists.

In the extreme, if there are exact linear relationships (every element of v equal) then ρ(X) < K, so
ρ(X ′X) < K, so X ′X is not invertible and the OLS estimator is not uniquely defined. For example,



if the model is

yt = β1 + β2x2t + β3x3t + εt

x2t = α1 + α2x3t

then we can write

yt = β1 + β2 (α1 + α2x3t) + β3x3t + εt

= β1 + β2α1 + β2α2x3t + β3x3t + εt

= (β1 + β2α1) + (β2α2 + β3)x3t

= γ1 + γ2x3t + εt

• The γ′s can be consistently estimated, but since the γ′s define two equations in three β′s, the
β′s can’t be consistently estimated (there are multiple values of β that solve the first order
conditions). The β′s are unidentified in the case of perfect collinearity.

• Perfect collinearity is unusual, except in the case of an error in construction of the regressor
matrix, such as including the same regressor twice.

Another case where perfect collinearity may be encountered is with models with dummy variables, if
one is not careful. Consider a model of rental price (yi) of an apartment. This could depend factors
such as size, quality etc., collected in xi, as well as on the location of the apartment. Let Bi = 1 if the
ith apartment is in Barcelona, Bi = 0 otherwise. Similarly, define Gi, Ti and Li for Girona, Tarragona



and Lleida. One could use a model such as

yi = β1 + β2Bi + β3Gi + β4Ti + β5Li + x′iγ + εi

In this model, Bi +Gi + Ti + Li = 1, ∀i, so there is an exact relationship between these variables and
the column of ones corresponding to the constant. One must either drop the constant, or one of the
qualitative variables.

A brief aside on dummy variables

Dummy variable: A dummy variable is a binary-valued variable that indicates whether or not some
condition is true. It is customary to assign the value 1 if the condition is true, and 0 if the condition
is false.

Dummy variables are used essentially like any other regressor. Use d to indicate that a variable is
a dummy, so that variables like dt and dt2 are understood to be dummy variables. Variables like xt
and xt3 are ordinary continuous regressors. You know how to interpret the following models:

yt = β1 + β2dt + εt

yt = β1dt + β2(1− dt) + εt

yt = β1 + β2dt + β3xt + εt

Interaction terms: an interaction term is the product of two variables, so that the effect of one



variable on the dependent variable depends on the value of the other. The following model has an
interaction term. Note that ∂E(y|x)

∂x = β3 + β4dt. The slope depends on the value of dt.

yt = β1 + β2dt + β3xt + β4dtxt + εt

Multiple dummy variables: we can use more than one dummy variable in a model. We will study
models of the form

yt = β1 + β2dt1 + β3dt2 + β4xt + εt

yt = β1 + β2dt1 + β3dt2 + β4dt1dt2 + β5xt + εt

Incorrect usage: You should understand why the following models are not correct usages of dummy
variables:

1. overparameterization:
yt = β1 + β2dt + β3(1− dt) + εt

2. multiple values assigned to multiple categories. Suppose that we a condition that defines 4
possible categories, and we create a variable d = 1 if the observation is in the first category,
d = 2 if in the second, etc. (This is not strictly speaking a dummy variable, according to our
definition). Why is the following model not a good one?

yt = β1 + β2d+ ε

What is the correct way to deal with this situation?



Multiple parameterizations. To formulate a model that conditions on a given set of categorical
information, there are multiple ways to use dummy variables. For example, the two models

yt = β1dt + β2(1− dt) + β3xt + β4dtxt + εt

and

yt = α1 + α2dt + α3xtdt + α4xt(1− dt) + εt

are equivalent. You should know what are the 4 equations that relate the βj parameters to the αj
parameters, j = 1, 2, 3, 4. You should know how to interpret the parameters of both models.

Back to collinearity

The more common case, if one doesn’t make mistakes such as these, is the existence of inexact linear
relationships, i.e., correlations between the regressors that are less than one in absolute value, but not
zero. The basic problem is that when two (or more) variables move together, it is difficult to determine
their separate influences.

Example 16. Two children are in a room, along with a broken lamp. Both say ”I didn’t do it!”. How
can we tell who broke the lamp?

Lack of knowledge about the separate influences of variables is reflected in imprecise estimates,
i.e., estimates with high variances. With economic data, collinearity is commonly encountered, and is
often a severe problem.



Figure 7.1: s(β) when there is no collinearity
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When there is collinearity, the minimizing point of the objective function that defines the OLS
estimator (s(β), the sum of squared errors) is relatively poorly defined. This is seen in Figures 7.1 and
7.2.

To see the effect of collinearity on variances, partition the regressor matrix as

X =
[

x W
]

where x is the first column of X (note: we can interchange the columns of X isf we like, so there’s
no loss of generality in considering the first column). Now, the variance of β̂, under the classical



Figure 7.2: s(β) when there is collinearity
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assumptions, is
V (β̂) = (X ′X)−1

σ2

Using the partition,

X ′X =
 x′x x′W
W ′x W ′W


and following a rule for partitioned inversion,

(X ′X)−1
1,1 =

(
x′x− x′W (W ′W )−1W ′x

)−1

=
(
x′
(
In −W (W ′W )′1W ′)x

)−1

=
(
ESSx|W

)−1

where by ESSx|W we mean the error sum of squares obtained from the regression

x = Wλ+ v.

Since
R2 = 1− ESS/TSS,

we have
ESS = TSS(1−R2)

so the variance of the coefficient corresponding to x is

V (β̂x) = σ2

TSSx(1−R2
x|W ) (7.1)



We see three factors influence the variance of this coefficient. It will be high if

1. σ2 is large

2. There is little variation in x. Draw a picture here.

3. There is a strong linear relationship between x and the other regressors, so that W can explain
the movement in x well. In this case, R2

x|W will be close to 1. As R2
x|W → 1, V (β̂x)→∞.

The last of these cases is collinearity.
Intuitively, when there are strong linear relations between the regressors, it is difficult to determine

the separate influence of the regressors on the dependent variable. This can be seen by comparing the
OLS objective function in the case of no correlation between regressors with the objective function
with correlation between the regressors. See the figures nocollin.ps (no correlation) and collin.ps
(correlation), available on the web site.

Example 17. The Octave script DataProblems/collinearity.m performs a Monte Carlo study with
correlated regressors. The model is y = 1 +x2 +x3 + ε, where the correlation between x2 and x3can be
set. Three estimators are used: OLS, OLS dropping x3 (a false restriction), and restricted LS using
β2 = β3 (a true restriction). The output when the correlation between the two regressors is 0.9 is

octave:1> collinearity

Contribution received from node 0. Received so far: 500

Contribution received from node 0. Received so far: 1000

http://pareto.uab.es/mcreel/Econometrics/Examples/DataProblems/collinearity.m


correlation between x2 and x3: 0.900000

descriptive statistics for 1000 OLS replications
mean st. dev. min max
0.996 0.182 0.395 1.574
0.996 0.444 -0.463 2.517
1.008 0.436 -0.342 2.301

descriptive statistics for 1000 OLS replications, dropping x3
mean st. dev. min max
0.999 0.198 0.330 1.696
1.905 0.207 1.202 2.651

descriptive statistics for 1000 Restricted OLS replications, b2=b3
mean st. dev. min max
0.998 0.179 0.433 1.574
1.002 0.096 0.663 1.339
1.002 0.096 0.663 1.339

octave:2>

Figure 7.3 shows histograms for the estimated β2, for each of the three estimators.

• repeat the experiment with a lower value of rho, and note how the standard errors of the OLS
estimator change.



Figure 7.3: Collinearity: Monte Carlo results
(a) OLS,β̂2 (b) OLS,β̂2, dropping x3

(c) Restricted LS,β̂2, with true restrictionβ2 = β3



Detection of collinearity

The best way is simply to regress each explanatory variable in turn on the remaining regressors. If
any of these auxiliary regressions has a high R2, there is a problem of collinearity. Furthermore, this
procedure identifies which parameters are affected.

• Sometimes, we’re only interested in certain parameters. Collinearity isn’t a problem if it doesn’t
affect what we’re interested in estimating.

An alternative is to examine the matrix of correlations between the regressors. High correlations are
sufficient but not necessary for severe collinearity.

Also indicative of collinearity is that the model fits well (high R2), but none of the variables is
significantly different from zero (e.g., their separate influences aren’t well determined).

In summary, the artificial regressions are the best approach if one wants to be careful.

Example 18. Nerlove data and collinearity. The simple Nerlove model is

lnC = β1 + β2 lnQ+ β3 lnPL + β4 lnPF + β5 lnPK + ε

When this model is estimated by OLS, some coefficients are not significant (see subsection 3.8). This
may be due to collinearity.The Octave script DataProblems/NerloveCollinearity.m checks the regres-
sors for collinearity. If you run this, you will see that collinearity is not a problem with this data. Why
is the coefficient of lnPK not significantly different from zero?

http://pareto.uab.es/mcreel/Econometrics/Examples/DataProblems/NerloveCollinearity.m


Dealing with collinearity

More information

Collinearity is a problem of an uninformative sample. The first question is: is all the available informa-
tion being used? Is more data available? Are there coefficient restrictions that have been neglected?
Picture illustrating how a restriction can solve problem of perfect collinearity.

Stochastic restrictions and ridge regression

Supposing that there is no more data or neglected restrictions, one possibility is to change perspectives,
to Bayesian econometrics. One can express prior beliefs regarding the coefficients using stochastic
restrictions. A stochastic linear restriction would be something of the form

Rβ = r + v

where R and r are as in the case of exact linear restrictions, but v is a random vector. For example,
the model could be

y = Xβ + ε

Rβ = r + v ε

v

 ∼ N

 0
0

 ,
 σ2

εIn 0n×q
0q×n σ2

vIq


This sort of model isn’t in line with the classical interpretation of parameters as constants: according
to this interpretation the left hand side of Rβ = r + v is constant but the right is random. This



model does fit the Bayesian perspective: we combine information coming from the model and the
data, summarized in

y = Xβ + ε

ε ∼ N(0, σ2
εIn)

with prior beliefs regarding the distribution of the parameter, summarized in

Rβ ∼ N(r, σ2
vIq)

Since the sample is random it is reasonable to suppose that E(εv′) = 0, which is the last piece of
information in the specification. How can you estimate using this model? The solution is to treat the
restrictions as artificial data. Write

 y
r

 =
 X
R

 β +
 ε
v



This model is heteroscedastic, since σ2
ε 6= σ2

v. Define the prior precision k = σε/σv. This expresses the
degree of belief in the restriction relative to the variability of the data. Supposing that we specify k,
then the model  y

kr

 =
 X

kR

 β +
 ε

kv


is homoscedastic and can be estimated by OLS. Note that this estimator is biased. It is consistent,
however, given that k is a fixed constant, even if the restriction is false (this is in contrast to the case
of false exact restrictions). To see this, note that there are Q restrictions, where Q is the number of



rows of R. As n→∞, these Q artificial observations have no weight in the objective function, so the
estimator has the same limiting objective function as the OLS estimator, and is therefore consistent.

To motivate the use of stochastic restrictions, consider the expectation of the squared length of β̂:

E(β̂′β̂) = E
{(
β + (X ′X)−1

X ′ε
)′ (

β + (X ′X)−1
X ′ε

)}
= β′β + E

(
ε′X(X ′X)−1(X ′X)−1X ′ε

)
= β′β + Tr (X ′X)−1

σ2

= β′β + σ2
K∑
i=1

λi(the trace is the sum of eigenvalues)

> β′β + λmax(X ′X−1)σ
2(the eigenvalues are all positive, sinceX ′X is p.d.

so
E(β̂′β̂) > β′β + σ2

λmin(X ′X)

where λmin(X ′X) is the minimum eigenvalue of X ′X (which is the inverse of the maximum eigenvalue of
(X ′X)−1). As collinearity becomes worse and worse, X ′X becomes more nearly singular, so λmin(X ′X)

tends to zero (recall that the determinant is the product of the eigenvalues) and E(β̂′β̂) tends to
infinite. On the other hand, β′β is finite.

Now considering the restriction IKβ = 0 + v. With this restriction the model becomes
 y

0

 =
 X

kIK

 β +
 ε

kv





and the estimator is

β̂ridge =
[ X ′ kIK ]  X

kIK



−1 [

X ′ IK

]  y
0


=

(
X ′X + k2IK

)−1
X ′y

This is the ordinary ridge regression estimator. The ridge regression estimator can be seen to add
k2IK , which is nonsingular, to X ′X, which is more and more nearly singular as collinearity becomes
worse and worse. As k → ∞, the restrictions tend to β = 0, that is, the coefficients are shrunken
toward zero. Also, the estimator tends to

β̂ridge =
(
X ′X + k2IK

)−1
X ′y →

(
k2IK

)−1
X ′y = X ′y

k2 → 0

so β̂′ridgeβ̂ridge → 0. This is clearly a false restriction in the limit, if our original model is at all sensible.
There should be some amount of shrinkage that is in fact a true restriction. The problem is to

determine the k such that the restriction is correct. The interest in ridge regression centers on the fact
that it can be shown that there exists a k such that MSE(β̂ridge) < β̂OLS. The problem is that this k
depends on β and σ2, which are unknown.

The ridge trace method plots β̂′ridgeβ̂ridge as a function of k, and chooses the value of k that
“artistically” seems appropriate (e.g., where the effect of increasing k dies off). Draw picture here.
This means of choosing k is obviously subjective. This is not a problem from the Bayesian perspective:
the choice of k reflects prior beliefs about the length of β.

In summary, the ridge estimator offers some hope, but it is impossible to guarantee that it will
outperform the OLS estimator. Collinearity is a fact of life in econometrics, and there is no clear



Figure 7.4: OLS and Ridge regression
(a) OLS (b) Ridge

solution to the problem.
The Octave script DataProblems/RidgeRegression.m does a Monte Carlo study that shows that

ridge regression can help to deal with collinearity. This script generates Figures and, which show the
Monte Carlo sampling frequency of the OLS and ridge estimators, after subtracting the true parameter
values. You can see that the ridge estimator has much lower RMSE.

7.2 Measurement error

Measurement error is exactly what it says, either the dependent variable or the regressors are measured
with error. Thinking about the way economic data are reported, measurement error is probably quite
prevalent. For example, estimates of growth of GDP, inflation, etc. are commonly revised several
times. Why should the last revision necessarily be correct?

http://pareto.uab.es/mcreel/Econometrics/Examples/DataProblems/RidgeRegression.m


Error of measurement of the dependent variable

Measurement errors in the dependent variable and the regressors have important differences. First
consider error in measurement of the dependent variable. The data generating process is presumed to
be

y∗ = Xβ + ε

y = y∗ + v

vt ∼ iid(0, σ2
v)

where y∗ = y + v is the unobservable true dependent variable, and y is what is observed. We assume
that ε and v are independent and that y∗ = Xβ + ε satisfies the classical assumptions. Given this, we
have

y + v = Xβ + ε

so

y = Xβ + ε− v
= Xβ + ω

ωt ∼ iid(0, σ2
ε + σ2

v)

• As long as v is uncorrelated with X, this model satisfies the classical assumptions and can be
estimated by OLS. This type of measurement error isn’t a problem, then, except in that the
increased variability of the error term causes an increase in the variance of the OLS estimator
(see equation 7.1).



Error of measurement of the regressors

The situation isn’t so good in this case. The DGP is

yt = x∗′t β + εt

xt = x∗t + vt

vt ∼ iid(0,Σv)

where Σv is a K × K matrix. Now X∗ contains the true, unobserved regressors, and X is what is
observed. Again assume that v is independent of ε, and that the model y = X∗β + ε satisfies the
classical assumptions. Now we have

yt = (xt − vt)′ β + εt

= x′tβ − v′tβ + εt

= x′tβ + ωt

The problem is that now there is a correlation between xt and ωt, since

E(xtωt) = E ((x∗t + vt) (−v′tβ + εt))
= −Σvβ

where
Σv = E (vtv′t) .



Because of this correlation, the OLS estimator is biased and inconsistent, just as in the case of au-
tocorrelated errors with lagged dependent variables. In matrix notation, write the estimated model
as

y = Xβ + ω

We have that
β̂ =

X ′X
n

−1 X ′y
n


and

plim

X ′X
n

−1

= plim
(X∗′ + V ′) (X∗ + V )

n

= (QX∗ + Σv)−1

since X∗ and V are independent, and

plim
V ′V

n
= lim E 1

n

n∑
t=1

vtv
′
t

= Σv

Likewise,

plim

X ′y
n

 = plim
(X∗′ + V ′) (X∗β + ε)

n

= QX∗β



so
plimβ̂ = (QX∗ + Σv)−1QX∗β

So we see that the least squares estimator is inconsistent when the regressors are measured with error.

• A potential solution to this problem is the instrumental variables (IV) estimator, which we’ll
discuss shortly.

Example 19. Measurement error in a dynamic model. Consider the model

y∗t = α + ρy∗t−1 + βxt + εt

yt = y∗t + υt

where εt and υt are independent Gaussian white noise errors. Suppose that y∗t is not observed, and
instead we observe yt. What are the properties of the OLS regression on the equation

yt = α + ρyt−1 + βxt + νt

? The error is

νt = yt − α− ρyt−1 − βxt
= y∗t + υt − α− ρy∗t−1 − ρυt−1 − βxt
= α + ρy∗t−1 + βxt + εt + υt − α− ρy∗t−1 − ρυt−1 − βxt
= εt + υt − ρυt−1

So the error term is autocorrelated. Note that yt−1 = α + ρyt−2 + βxt−1 + νt−1, so we the error νt



and the regressor yt−1 are correlated, because they share the common term υt−1. This means that the
equation

yt = α + ρyt−1 + βxt + νt

does not satisfy weak exogeneity, and the OLS estimator will be biased and inconsistent.
The Octave script DataProblems/MeasurementError.m does a Monte Carlo study. The sample

size is n = 100. Figure 7.5 gives the results. The first panel shows a histogram for 1000 replications of
ρ̂−ρ, when σν = 1, so that there is significant measurement error. The second panel repeats this with
σν = 0, so that there is not measurement error. Note that there is much more bias with measurement
error. There is also bias without measurement error. This is due to the same reason that we saw bias
in Figure 3.7: one of the classical assumptions (nonstochastic regressors) that guarantees unbiasedness
of OLS does not hold for this model. Without measurement error, the OLS estimator is consistent.
By re-running the script with larger n, you can verify that the bias disappears when σν = 0, but not
when σν > 0.

http://pareto.uab.es/mcreel/Econometrics/Examples/DataProblems/MeasurementError.m


Figure 7.5: ρ̂− ρ with and without measurement error
(a) with measurement error: σν = 1 (b) without measurement error: σν = 0

7.3 Missing observations

Missing observations occur quite frequently: time series data may not be gathered in a certain year, or
respondents to a survey may not answer all questions. We’ll consider two cases: missing observations
on the dependent variable and missing observations on the regressors.

Missing observations on the dependent variable

In this case, we have
y = Xβ + ε



or  y1

y2

 =
 X1

X2

 β +
 ε1

ε2


where y2 is not observed. Otherwise, we assume the classical assumptions hold.

• A clear alternative is to simply estimate using the compete observations

y1 = X1β + ε1

Since these observations satisfy the classical assumptions, one could estimate by OLS.

• The question remains whether or not one could somehow replace the unobserved y2 by a predictor,
and improve over OLS in some sense. Let ŷ2 be the predictor of y2. Now

β̂ =

 X1

X2


′  X1

X2



−1  X1

X2


′  y1

ŷ2


= [X ′1X1 +X ′2X2]−1 [X ′1y1 +X ′2ŷ2]

Recall that the OLS fonc are
X ′Xβ̂ = X ′y

so if we regressed using only the first (complete) observations, we would have

X ′1X1β̂1 = X ′1y1.



Likewise, an OLS regression using only the second (filled in) observations would give

X ′2X2β̂2 = X ′2ŷ2.

Substituting these into the equation for the overall combined estimator gives

β̂ = [X ′1X1 +X ′2X2]−1
[
X ′1X1β̂1 +X ′2X2β̂2

]
= [X ′1X1 +X ′2X2]−1

X ′1X1β̂1 + [X ′1X1 +X ′2X2]−1
X ′2X2β̂2

≡ Aβ̂1 + (IK − A)β̂2

where
A ≡ [X ′1X1 +X ′2X2]−1

X ′1X1

and we use

[X ′1X1 +X ′2X2]−1
X ′2X2 = [X ′1X1 +X ′2X2]−1 [(X ′1X1 +X ′2X2)−X ′1X1]

= IK − [X ′1X1 +X ′2X2]−1
X ′1X1

= IK − A.

Now,
E(β̂) = Aβ + (IK − A)E

(
β̂2

)

and this will be unbiased only if E
(
β̂2

)
= β.

• The conclusion is that the filled in observations alone would need to define an unbiased estimator.



This will be the case only if
ŷ2 = X2β + ε̂2

where ε̂2 has mean zero. Clearly, it is difficult to satisfy this condition without knowledge of β.

• Note that putting ŷ2 = ȳ1 does not satisfy the condition and therefore leads to a biased estimator.

Exercise 20. Formally prove this last statement.

The sample selection problem

In the above discussion we assumed that the missing observations are random. The sample selection
problem is a case where the missing observations are not random. Consider the model

y∗t = x′tβ + εt

which is assumed to satisfy the classical assumptions. However, y∗t is not always observed. What is
observed is yt defined as

yt = y∗t if y∗t ≥ 0

Or, in other words, y∗t is missing when it is less than zero.
The difference in this case is that the missing values are not random: they are correlated with the

xt. Consider the case
y∗ = x+ ε

with V (ε) = 25, but using only the observations for which y∗ > 0 to estimate. Figure 7.6 illustrates
the bias. The Octave program is sampsel.m

http://pareto.uab.es/mcreel/Econometrics/Examples/Figures/sampsel.m


Figure 7.6: Sample selection bias
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There are means of dealing with sample selection bias, but we will not go into it here. One should
at least be aware that nonrandom selection of the sample will normally lead to bias and inconsistency
if the problem is not taken into account.

Missing observations on the regressors

Again the model is  y1

y2

 =
 X1

X2

 β +
 ε1

ε2


but we assume now that each row of X2 has an unobserved component(s). Again, one could just
estimate using the complete observations, but it may seem frustrating to have to drop observations
simply because of a single missing variable. In general, if the unobserved X2 is replaced by some
prediction, X∗2 , then we are in the case of errors of observation. As before, this means that the OLS
estimator is biased when X∗2 is used instead of X2. Consistency is salvaged, however, as long as the
number of missing observations doesn’t increase with n.

• Including observations that have missing values replaced by ad hoc values can be interpreted
as introducing false stochastic restrictions. In general, this introduces bias. It is difficult to
determine whether MSE increases or decreases. Monte Carlo studies suggest that it is dangerous
to simply substitute the mean, for example.

• In the case that there is only one regressor other than the constant, subtitution of x̄ for the
missing xt does not lead to bias. This is a special case that doesn’t hold for K > 2.

Exercise 21. Prove this last statement.



• In summary, if one is strongly concerned with bias, it is best to drop observations that have
missing components. There is potential for reduction of MSE through filling in missing elements
with intelligent guesses, but this could also increase MSE.

7.4 Missing regressors

Suppose that the model y = Xβ + Wγ + ε satisfies the classical assumptions, so OLS would be a
consistent estimator. However, let’s suppose that the regressors W are not available in the sample.
What are the properties of the OLS estimator of the model y = Xβ + ω? We can think of this as
a case of imposing false restrictions: γ = 0 when in fact γ 6= 0. We know that the restricted least
squares estimator is biased and inconsistent, in general, when we impose false restrictions. Another
way of thinking of this is to look to see if X and ω are correlated. We have

E(Xtωt) = E (Xt (W ′
tγ + εt))

= E(XtW
′
tγ) + E(Xtεt)

= E(XtW
′
tγ)

where the last line follows because E(Xtεt) = 0 by assumption. So, there will be correlation between
the error and the regressors if there is collinearity between the included regressors Xt and the missing
regressorsWt. If there is not, the OLS estimator will be consistent. Because the normal thing is to have
collinearity between regressors, we expect that missing regressors will lead to bias and inconsistency
of the OLS estimator.



7.5 Exercises

1. Consider the simple Nerlove model

lnC = β1 + β2 lnQ+ β3 lnPL + β4 lnPF + β5 lnPK + ε

When this model is estimated by OLS, some coefficients are not significant. We have seen that
collinearity is not an important problem. Why is β5 not significantly different from zero? Give
an economic explanation.

2. For the model y = β1x1 + β2x2 + ε,

(a) verify that the level sets of the OLS criterion function (defined in equation 3.2) are straight
lines when there is perfect collinearity

(b) For this model with perfect collinearity, the OLS estimator does not exist. Depict what this
statement means using a drawing.

(c) Show how a restriction R1β1 + R2β2 = r causes the restricted least squares estimator to
exist, using a drawing.



Chapter 8

Functional form and nonnested
tests

Though theory often suggests which conditioning variables should be included, and suggests the signs
of certain derivatives, it is usually silent regarding the functional form of the relationship between the
dependent variable and the regressors. For example, considering a cost function, one could have a
Cobb-Douglas model

c = Awβ1
1 w

β2
2 q

βqeε

This model, after taking logarithms, gives

ln c = β0 + β1 lnw1 + β2 lnw2 + βq ln q + ε

150



where β0 = lnA. Theory suggests that A > 0, β1 > 0, β2 > 0, β3 > 0. This model isn’t compatible with
a fixed cost of production since c = 0 when q = 0. Homogeneity of degree one in input prices suggests
that β1 + β2 = 1, while constant returns to scale implies βq = 1.

While this model may be reasonable in some cases, an alternative

√
c = β0 + β1

√
w1 + β2

√
w2 + βq

√
q + ε

may be just as plausible. Note that
√
x and ln(x) look quite alike, for certain values of the regressors,

and up to a linear transformation, so it may be difficult to choose between these models.
The basic point is that many functional forms are compatible with the linear-in-parameters model,

since this model can incorporate a wide variety of nonlinear transformations of the dependent variable
and the regressors. For example, suppose that g(·) is a real valued function and that x(·) is a K−
vector-valued function. The following model is linear in the parameters but nonlinear in the variables:

xt = x(zt)
yt = x′tβ + εt

There may be P fundamental conditioning variables zt, but there may be K regressors, where K may
be smaller than, equal to or larger than P. For example, xt could include squares and cross products
of the conditioning variables in zt.



8.1 Flexible functional forms

Given that the functional form of the relationship between the dependent variable and the regressors is
in general unknown, one might wonder if there exist parametric models that can closely approximate
a wide variety of functional relationships. A “Diewert-Flexible” functional form is defined as one such
that the function, the vector of first derivatives and the matrix of second derivatives can take on an
arbitrary value at a single data point. Flexibility in this sense clearly requires that there be at least

K = 1 + P +
(
P 2 − P

)
/2 + P

free parameters: one for each independent effect that we wish to model.
Suppose that the model is

y = g(x) + ε

A second-order Taylor’s series expansion (with remainder term) of the function g(x) about the point
x = 0 is

g(x) = g(0) + x′Dxg(0) + x′D2
xg(0)x
2 +R

Use the approximation, which simply drops the remainder term, as an approximation to g(x) :

g(x) ' gK(x) = g(0) + x′Dxg(0) + x′D2
xg(0)x
2

As x → 0, the approximation becomes more and more exact, in the sense that gK(x) → g(x),
DxgK(x) → Dxg(x) and D2

xgK(x) → D2
xg(x). For x = 0, the approximation is exact, up to the

second order. The idea behind many flexible functional forms is to note that g(0), Dxg(0) and D2
xg(0)



are all constants. If we treat them as parameters, the approximation will have exactly enough free
parameters to approximate the function g(x), which is of unknown form, exactly, up to second order,
at the point x = 0. The model is

gK(x) = α + x′β + 1/2x′Γx

so the regression model to fit is
y = α + x′β + 1/2x′Γx+ ε

• While the regression model has enough free parameters to be Diewert-flexible, the question
remains: is plimα̂ = g(0)? Is plimβ̂ = Dxg(0)? Is plimΓ̂ = D2

xg(0)?

• The answer is no, in general. The reason is that if we treat the true values of the parameters as
these derivatives, then ε is forced to play the part of the remainder term, which is a function of
x, so that x and ε are correlated in this case. As before, the estimator is biased in this case.

• A simpler example would be to consider a first-order T.S. approximation to a quadratic function.
Draw picture.

• The conclusion is that “flexible functional forms” aren’t really flexible in a useful statistical
sense, in that neither the function itself nor its derivatives are consistently estimated, unless the
function belongs to the parametric family of the specified functional form. In order to lead to
consistent inferences, the regression model must be correctly specified.



The translog form

In spite of the fact that FFF’s aren’t really flexible for the purposes of econometric estimation and
inference, they are useful, and they are certainly subject to less bias due to misspecification of the
functional form than are many popular forms, such as the Cobb-Douglas or the simple linear in the
variables model. The translog model is probably the most widely used FFF. This model is as above,
except that the variables are subjected to a logarithmic tranformation. Also, the expansion point is
usually taken to be the sample mean of the data, after the logarithmic transformation. The model is
defined by

y = ln(c)

x = ln
(
z

z̄

)
= ln(z)− ln(z̄)

y = α + x′β + 1/2x′Γx+ ε

In this presentation, the t subscript that distinguishes observations is suppressed for simplicity. Note
that

∂y

∂x
= β + Γx

= ∂ ln(c)
∂ ln(z) (the other part of x is constant)

= ∂c

∂z

z

c



which is the elasticity of c with respect to z. This is a convenient feature of the translog model. Note
that at the means of the conditioning variables, z̄, x = 0, so

∂y

∂x

∣∣∣∣∣
z=z̄

= β

so the β are the first-order elasticities, at the means of the data.
To illustrate, consider that y is cost of production:

y = c(w, q)

where w is a vector of input prices and q is output. We could add other variables by extending q in
the obvious manner, but this is supressed for simplicity. By Shephard’s lemma, the conditional factor
demands are

x = ∂c(w, q)
∂w

and the cost shares of the factors are therefore

s = wx

c
= ∂c(w, q)

∂w

w

c

which is simply the vector of elasticities of cost with respect to input prices. If the cost function is
modeled using a translog function, we have

ln(c) = α + x′β + z′δ + 1/2
[
x′ z

]  Γ11 Γ12

Γ′12 Γ22


 x
z


= α + x′β + z′δ + 1/2x′Γ11x+ x′Γ12z + 1/2z2γ22



where x = ln(w/w̄) (element-by-element division) and z = ln(q/q̄), and

Γ11 =
 γ11 γ12

γ12 γ22



Γ12 =
 γ13

γ23


Γ22 = γ33.

Note that symmetry of the second derivatives has been imposed.
Then the share equations are just

s = β +
[

Γ11 Γ12

]  x
z


Therefore, the share equations and the cost equation have parameters in common. By pooling the
equations together and imposing the (true) restriction that the parameters of the equations be the
same, we can gain efficiency.

To illustrate in more detail, consider the case of two inputs, so

x =
 x1

x2

 .
In this case the translog model of the logarithmic cost function is

ln c = α + β1x1 + β2x2 + δz + γ11

2 x2
1 + γ22

2 x2
2 + γ33

2 z2 + γ12x1x2 + γ13x1z + γ23x2z



The two cost shares of the inputs are the derivatives of ln c with respect to x1 and x2:

s1 = β1 + γ11x1 + γ12x2 + γ13z

s2 = β2 + γ12x1 + γ22x2 + γ13z

Note that the share equations and the cost equation have parameters in common. One can do
a pooled estimation of the three equations at once, imposing that the parameters are the same. In
this way we’re using more observations and therefore more information, which will lead to imporved
efficiency. Note that this does assume that the cost equation is correctly specified (i.e., not an approx-
imation), since otherwise the derivatives would not be the true derivatives of the log cost function,
and would then be misspecified for the shares. To pool the equations, write the model in matrix form
(adding in error terms)


ln c
s1

s2

 =


1 x1 x2 z x2

1
2

x2
2

2
z2

2 x1x2 x1z x2z

0 1 0 0 x1 0 0 x2 z 0
0 0 1 0 0 x2 0 x1 0 z





α

β1

β2

δ

γ11

γ22

γ33

γ12

γ13

γ23



+


ε1

ε2

ε3





This is one observation on the three equations. With the appropriate notation, a single observation
can be written as

yt = Xtθ + εt

The overall model would stack n observations on the three equations for a total of 3n observations:


y1

y2
...
yn


=



X1

X2
...
Xn


θ +



ε1

ε2
...
εn



Next we need to consider the errors. For observation t the errors can be placed in a vector

εt =


ε1t

ε2t

ε3t



First consider the covariance matrix of this vector: the shares are certainly correlated since they
must sum to one. (In fact, with 2 shares the variances are equal and the covariance is -1 times the
variance. General notation is used to allow easy extension to the case of more than 2 inputs). Also,
it’s likely that the shares and the cost equation have different variances. Supposing that the model is
covariance stationary, the variance of εt won′t depend upon t:

V arεt = Σ0 =


σ11 σ12 σ13

· σ22 σ23

· · σ33





Note that this matrix is singular, since the shares sum to 1. Assuming that there is no autocorrelation,
the overall covariance matrix has the seemingly unrelated regressions (SUR) structure.

V ar



ε1

ε2
...
εn


= Σ

=



Σ0 0 · · · 0
0 Σ0

. . . ...
... . . . 0
0 · · · 0 Σ0


= In ⊗ Σ0

where the symbol ⊗ indicates the Kronecker product. The Kronecker product of two matrices A and
B is

A⊗B =



a11B a12B · · · a1qB

a21B
. . . ...

...
apqB · · · apqB


.

FGLS estimation of a translog model

So, this model has heteroscedasticity and autocorrelation, so OLS won’t be efficient. The next question
is: how do we estimate efficiently using FGLS? FGLS is based upon inverting the estimated error
covariance Σ̂. So we need to estimate Σ.



An asymptotically efficient procedure is (supposing normality of the errors)

1. Estimate each equation by OLS

2. Estimate Σ0 using
Σ̂0 = 1

n

n∑
t=1

ε̂tε̂
′
t

3. Next we need to account for the singularity of Σ0. It can be shown that Σ̂0 will be singular when
the shares sum to one, so FGLS won’t work. The solution is to drop one of the share equations,
for example the second. The model becomes

 ln c
s1

 =
 1 x1 x2 z x2

1
2

x2
2

2
z2

2 x1x2 x1z x2z

0 1 0 0 x1 0 0 x2 z 0





α

β1

β2

δ

γ11

γ22

γ33

γ12

γ13

γ23



+
 ε1

ε2



or in matrix notation for the observation:

y∗t = X∗t θ + ε∗t



and in stacked notation for all observations we have the 2n observations:


y∗1
y∗2
...
y∗n


=



X∗1
X∗2
...
X∗n


θ +



ε∗1
ε∗2
...
ε∗n



or, finally in matrix notation for all observations:

y∗ = X∗θ + ε∗

Considering the error covariance, we can define

Σ∗0 = V ar

 ε1

ε2


Σ∗ = In ⊗ Σ∗0

Define Σ̂∗0 as the leading 2× 2 block of Σ̂0 , and form

Σ̂∗ = In ⊗ Σ̂∗0.

This is a consistent estimator, following the consistency of OLS and applying a LLN.

4. Next compute the Cholesky factorization

P̂0 = Chol
(
Σ̂∗0
)−1



(I am assuming this is defined as an upper triangular matrix, which is consistent with the way
Octave does it) and the Cholesky factorization of the overall covariance matrix of the 2 equation
model, which can be calculated as

P̂ = CholΣ̂∗ = In ⊗ P̂0

5. Finally the FGLS estimator can be calculated by applying OLS to the transformed model

P̂ ′y∗ = P̂ ′X∗θ + ˆ̂ ′
Pε∗

or by directly using the GLS formula

θ̂FGLS =
(
X∗′

(
Σ̂∗0
)−1

X∗
)−1

X∗′
(
Σ̂∗0
)−1

y∗

It is equivalent to transform each observation individually:

P̂ ′0y
∗
y = P̂ ′0X

∗
t θ + P̂ ′0ε

∗

and then apply OLS. This is probably the simplest approach.

A few last comments.

1. We have assumed no autocorrelation across time. This is clearly restrictive. It is relatively simple
to relax this, but we won’t go into it here.

2. Also, we have only imposed symmetry of the second derivatives. Another restriction that the



model should satisfy is that the estimated shares should sum to 1. This can be accomplished by
imposing

β1 + β2 = 1
3∑
i=1

γij = 0, j = 1, 2, 3.

These are linear parameter restrictions, so they are easy to impose and will improve efficiency if
they are true.

3. The estimation procedure outlined above can be iterated. That is, estimate θ̂FGLS as above, then
re-estimate Σ∗0 using errors calculated as

ε̂ = y −Xθ̂FGLS

These might be expected to lead to a better estimate than the estimator based on θ̂OLS, since
FGLS is asymptotically more efficient. Then re-estimate θ using the new estimated error covari-
ance. It can be shown that if this is repeated until the estimates don’t change (i.e., iterated to
convergence) then the resulting estimator is the MLE. At any rate, the asymptotic properties
of the iterated and uniterated estimators are the same, since both are based upon a consistent
estimator of the error covariance.



8.2 Testing nonnested hypotheses

Given that the choice of functional form isn’t perfectly clear, in that many possibilities exist, how
can one choose between forms? When one form is a parametric restriction of another, the previously
studied tests such as Wald, LR, score or qF are all possibilities. For example, the Cobb-Douglas model
is a parametric restriction of the translog: The translog is

yt = α + x′tβ + 1/2x′tΓxt + ε

where the variables are in logarithms, while the Cobb-Douglas is

yt = α + x′tβ + ε

so a test of the Cobb-Douglas versus the translog is simply a test that Γ = 0.
The situation is more complicated when we want to test non-nested hypotheses. If the two functional

forms are linear in the parameters, and use the same transformation of the dependent variable, then
they may be written as

M1 : y = Xβ + ε

εt ∼ iid(0, σ2
ε)

M2 : y = Zγ + η

η ∼ iid(0, σ2
η)

We wish to test hypotheses of the form: H0 : Mi is correctly specified versus HA : Mi is misspecified,



for i = 1, 2.

• One could account for non-iid errors, but we’ll suppress this for simplicity.

• There are a number of ways to proceed. We’ll consider the J test, proposed by Davidson and
MacKinnon, Econometrica (1981). The idea is to artificially nest the two models, e.g.,

y = (1− α)Xβ + α(Zγ) + ω

If the first model is correctly specified, then the true value of α is zero. On the other hand, if
the second model is correctly specified then α = 1.

– The problem is that this model is not identified in general. For example, if the models share
some regressors, as in

M1 : yt = β1 + β2x2t + β3x3t + εt

M2 : yt = γ1 + γ2x2t + γ3x4t + ηt

then the composite model is

yt = (1− α)β1 + (1− α)β2x2t + (1− α)β3x3t + αγ1 + αγ2x2t + αγ3x4t + ωt

Combining terms we get

yt = ((1− α)β1 + αγ1) + ((1− α)β2 + αγ2)x2t + (1− α)β3x3t + αγ3x4t + ωt

= δ1 + δ2x2t + δ3x3t + δ4x4t + ωt



The four δ′s are consistently estimable, but α is not, since we have four equations in 7 unknowns, so
one can’t test the hypothesis that α = 0.

The idea of the J test is to substitute γ̂ in place of γ. This is a consistent estimator supposing
that the second model is correctly specified. It will tend to a finite probability limit even if the second
model is misspecified. Then estimate the model

y = (1− α)Xβ + α(Zγ̂) + ω

= Xθ + αŷ + ω

where ŷ = Z(Z ′Z)−1Z ′y = PZy. In this model, α is consistently estimable, and one can show that,
under the hypothesis that the first model is correct, α p→ 0 and that the ordinary t -statistic for α = 0
is asymptotically normal:

t = α̂

σ̂α̂

a∼ N(0, 1)

• If the second model is correctly specified, then t p→ ∞, since α̂ tends in probability to 1, while
it’s estimated standard error tends to zero. Thus the test will always reject the false null model,
asymptotically, since the statistic will eventually exceed any critical value with probability one.

• We can reverse the roles of the models, testing the second against the first.

• It may be the case that neither model is correctly specified. In this case, the test will still reject
the null hypothesis, asymptotically, if we use critical values from the N(0, 1) distribution, since
as long as α̂ tends to something different from zero, |t| p→ ∞. Of course, when we switch the
roles of the models the other will also be rejected asymptotically.



• In summary, there are 4 possible outcomes when we test two models, each against the other.
Both may be rejected, neither may be rejected, or one of the two may be rejected.

• There are other tests available for non-nested models. The J− test is simple to apply when
both models are linear in the parameters. The P -test is similar, but easier to apply when M1 is
nonlinear.

• The above presentation assumes that the same transformation of the dependent variable is used
by both models. MacKinnon, White and Davidson, Journal of Econometrics, (1983) shows how
to deal with the case of different transformations.

• Monte-Carlo evidence shows that these tests often over-reject a correctly specified model. Can
use bootstrap critical values to get better-performing tests.



Chapter 9

Generalized least squares

Recall the assumptions of the classical linear regression model, in Section 3.6. One of the assumptions
we’ve made up to now is that

εt ∼ IID(0, σ2)

or occasionally
εt ∼ IIN(0, σ2).

Now we’ll investigate the consequences of nonidentically and/or dependently distributed errors. We’ll
assume fixed regressors for now, to keep the presentation simple, and later we’ll look at the conse-
quences of relaxing this admittedly unrealistic assumption. The model is

y = Xβ + ε

E(ε) = 0
V (ε) = Σ
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where Σ is a general symmetric positive definite matrix (we’ll write β in place of β0 to simplify the
typing of these notes).

• The case where Σ is a diagonal matrix gives uncorrelated, nonidentically distributed errors. This
is known as heteroscedasticity: ∃i, j s.t. V (εi) 6= V (εj)

• The case where Σ has the same number on the main diagonal but nonzero elements off the main
diagonal gives identically (assuming higher moments are also the same) dependently distributed
errors. This is known as autocorrelation: ∃i 6= j s.t. E(εiεj) 6= 0)

• The general case combines heteroscedasticity and autocorrelation. This is known as “nonspheri-
cal” disturbances, though why this term is used, I have no idea. Perhaps it’s because under the
classical assumptions, a joint confidence region for ε would be an n− dimensional hypersphere.

9.1 Effects of nonspherical disturbances on the OLS estima-
tor

The least square estimator is

β̂ = (X ′X)−1X ′y

= β + (X ′X)−1X ′ε

• We have unbiasedness, as before.



• The variance of β̂ is

E
[
(β̂ − β)(β̂ − β)′

]
= E

[
(X ′X)−1X ′εε′X(X ′X)−1]

= (X ′X)−1X ′ΣX(X ′X)−1 (9.1)

Due to this, any test statistic that is based upon an estimator of σ2 is invalid, since there isn’t
any σ2, it doesn’t exist as a feature of the true d.g.p. In particular, the formulas for the t, F, χ2

based tests given above do not lead to statistics with these distributions.

• β̂ is still consistent, following exactly the same argument given before.

• If ε is normally distributed, then

β̂ ∼ N
(
β, (X ′X)−1X ′ΣX(X ′X)−1)

The problem is that Σ is unknown in general, so this distribution won’t be useful for testing
hypotheses.

• Without normality, and with stochastic X (e.g., weakly exogenous regressors) we still have

√
n
(
β̂ − β

)
=
√
n(X ′X)−1X ′ε

=
X ′X

n

−1

n−1/2X ′ε



Define the limiting variance of n−1/2X ′ε (supposing a CLT applies) as

lim
n→∞ E

X ′εε′X
n

 = Ω, a.s.

so we obtain
√
n
(
β̂ − β

)
d→ N

(
0, Q−1

X ΩQ−1
X

)
. Note that the true asymptotic distribution of the

OLS has changed with respect to the results under the classical assumptions. If we neglect to
take this into account, the Wald and score tests will not be asymptotically valid. So we need to
figure out how to take it into account.

To see the invalidity of test procedures that are correct under the classical assumptions, when we
have nonspherical errors, consider the Octave script GLS/EffectsOLS.m. This script does a Monte
Carlo study, generating data that are either heteroscedastic or homoscedastic, and then computes the
empirical rejection frequency of a nominally 10% t-test. When the data are heteroscedastic, we obtain
something like what we see in Figure 9.1. This sort of heteroscedasticity causes us to reject a true null
hypothesis regarding the slope parameter much too often. You can experiment with the script to look
at the effects of other sorts of HET, and to vary the sample size.

http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/EffectsOLS.m


Figure 9.1: Rejection frequency of 10% t-test, H0 is true.



Summary: OLS with heteroscedasticity and/or autocorrelation is:

• unbiased with fixed or strongly exogenous regressors

• biased with weakly exogenous regressors

• has a different variance than before, so the previous test statistics aren’t valid

• is consistent

• is asymptotically normally distributed, but with a different limiting covariance matrix. Previous
test statistics aren’t valid in this case for this reason.

• is inefficient, as is shown below.

9.2 The GLS estimator

Suppose Σ were known. Then one could form the Cholesky decomposition

P ′P = Σ−1

Here, P is an upper triangular matrix. We have

P ′PΣ = In

so
P ′PΣP ′ = P ′,



which implies that
PΣP ′ = In

Let’s take some time to play with the Cholesky decomposition. Try out the GLS/cholesky.m Octave
script to see that the above claims are true, and also to see how one can generate data from a N(0, V )
distribition.

Consider the model
Py = PXβ + Pε,

or, making the obvious definitions,
y∗ = X∗β + ε∗.

This variance of ε∗ = Pε is

E(Pεε′P ′) = PΣP ′

= In

Therefore, the model

y∗ = X∗β + ε∗

E(ε∗) = 0
V (ε∗) = In

satisfies the classical assumptions. The GLS estimator is simply OLS applied to the transformed

http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/cholesky.m


model:

β̂GLS = (X∗′X∗)−1X∗′y∗

= (X ′P ′PX)−1X ′P ′Py

= (X ′Σ−1X)−1X ′Σ−1y

The GLS estimator is unbiased in the same circumstances under which the OLS estimator is
unbiased. For example, assuming X is nonstochastic

E(β̂GLS) = E
{
(X ′Σ−1X)−1X ′Σ−1y

}
= E

{
(X ′Σ−1X)−1X ′Σ−1(Xβ + ε

}
= β.

To get the variance of the estimator, we have

β̂GLS = (X∗′X∗)−1X∗′y∗

= (X∗′X∗)−1X∗′ (X∗β + ε∗)
= β + (X∗′X∗)−1X∗′ε∗



so

E
{(
β̂GLS − β

) (
β̂GLS − β

)′}
= E

{
(X∗′X∗)−1X∗′ε∗ε∗′X∗(X∗′X∗)−1}

= (X∗′X∗)−1X∗′X∗(X∗′X∗)−1

= (X∗′X∗)−1

= (X ′Σ−1X)−1

Either of these last formulas can be used.

• All the previous results regarding the desirable properties of the least squares estimator hold,
when dealing with the transformed model, since the transformed model satisfies the classical
assumptions..

• Tests are valid, using the previous formulas, as long as we substitute X∗ in place of X. Further-
more, any test that involves σ2 can set it to 1. This is preferable to re-deriving the appropriate
formulas.

• The GLS estimator is more efficient than the OLS estimator. This is a consequence of the
Gauss-Markov theorem, since the GLS estimator is based on a model that satisfies the classical
assumptions but the OLS estimator is not. To see this directly, note that

V ar(β̂)− V ar(β̂GLS) = (X ′X)−1X ′ΣX(X ′X)−1 − (X ′Σ−1X)−1

= AΣA′

where A =
[
(X ′X)−1X ′ − (X ′Σ−1X)−1X ′Σ−1

]
. This may not seem obvious, but it is true, as you



can verify for yourself. Then noting that AΣA′ is a quadratic form in a positive definite matrix,
we conclude that AΣA′ is positive semi-definite, and that GLS is efficient relative to OLS.

• As one can verify by calculating first order conditions, the GLS estimator is the solution to the
minimization problem

β̂GLS = arg min(y −Xβ)′Σ−1(y −Xβ)

so the metric Σ−1 is used to weight the residuals.

9.3 Feasible GLS

The problem is that Σ ordinarily isn’t known, so this estimator isn’t available.

• Consider the dimension of Σ : it’s an n × n matrix with (n2 − n) /2 + n = (n2 + n) /2 unique
elements (remember - it is symmetric, because it’s a covariance matrix).

• The number of parameters to estimate is larger than n and increases faster than n. There’s no
way to devise an estimator that satisfies a LLN without adding restrictions.

• The feasible GLS estimator is based upon making sufficient assumptions regarding the form of
Σ so that a consistent estimator can be devised.

Suppose that we parameterize Σ as a function of X and θ, where θ may include β as well as other
parameters, so that

Σ = Σ(X, θ)



where θ is of fixed dimension. If we can consistently estimate θ, we can consistently estimate Σ, as
long as the elements of Σ(X, θ) are continuous functions of θ (by the Slutsky theorem). In this case,

Σ̂ = Σ(X, θ̂) p→ Σ(X, θ)

If we replace Σ in the formulas for the GLS estimator with Σ̂, we obtain the FGLS estimator. The
FGLS estimator shares the same asymptotic properties as GLS. These are

1. Consistency

2. Asymptotic normality

3. Asymptotic efficiency if the errors are normally distributed. (Cramer-Rao).

4. Test procedures are asymptotically valid.

In practice, the usual way to proceed is

1. Define a consistent estimator of θ. This is a case-by-case proposition, depending on the parame-
terization Σ(θ). We’ll see examples below.

2. Form Σ̂ = Σ(X, θ̂)

3. Calculate the Cholesky factorization P̂ = Chol(Σ̂−1).

4. Transform the model using
P̂ y = P̂Xβ + P̂ ε

5. Estimate using OLS on the transformed model.



9.4 Heteroscedasticity

Heteroscedasticity is the case where
E(εε′) = Σ

is a diagonal matrix, so that the errors are uncorrelated, but have different variances. Heteroscedastic-
ity is usually thought of as associated with cross sectional data, though there is absolutely no reason
why time series data cannot also be heteroscedastic. Actually, the popular ARCH (autoregressive
conditionally heteroscedastic) models explicitly assume that a time series is heteroscedastic.

Consider a supply function
qi = β1 + βpPi + βsSi + εi

where Pi is price and Si is some measure of size of the ith firm. One might suppose that unobservable
factors (e.g., talent of managers, degree of coordination between production units, etc.) account for
the error term εi. If there is more variability in these factors for large firms than for small firms, then
εi may have a higher variance when Si is high than when it is low.

Another example, individual demand.

qi = β1 + βpPi + βmMi + εi

where P is price and M is income. In this case, εi can reflect variations in preferences. There are
more possibilities for expression of preferences when one is rich, so it is possible that the variance of
εi could be higher when M is high.

Add example of group means.



OLS with heteroscedastic consistent varcov estimation

Eicker (1967) and White (1980) showed how to modify test statistics to account for heteroscedasticity
of unknown form. The OLS estimator has asymptotic distribution

√
n
(
β̂ − β

)
d→ N

(
0, Q−1

X ΩQ−1
X

)

as we’ve already seen. Recall that we defined

lim
n→∞ E

X ′εε′X
n

 = Ω

This matrix has dimension K × K and can be consistently estimated, even if we can’t estimate Σ
consistently. The consistent estimator, under heteroscedasticity but no autocorrelation is

Ω̂ = 1
n

n∑
t=1

xtx
′
tε̂

2
t

One can then modify the previous test statistics to obtain tests that are valid when there is het-
eroscedasticity of unknown form. For example, the Wald test for H0 : Rβ − r = 0 would be

n
(
Rβ̂ − r

)′ R
X ′X

n

−1

Ω̂
X ′X

n

−1

R′


−1 (

Rβ̂ − r
)

a∼ χ2(q)

To see the effects of ignoring HET when doing OLS, and the good effect of using a HET consistent
covariance estimator, consider the script bootstrap_example1.m. This script generates data from a
linear model with HET, then computes standard errors using the ordinary OLS formula, the Eicker-

http://pareto.uab.es/mcreel/Econometrics/Examples/Parallel/bootstrap/bootstrap_example1.m


White formula, and also bootstrap standard errors. Note that Eicker-White and bootstrap pretty
much agree, while the OLS formula gives standard errors that are quite different. Typical output of
this script follows:



octave:1> bootstrap_example1
Bootstrap standard errors

0.083376 0.090719 0.143284
*********************************************************
OLS estimation results
Observations 100
R-squared 0.014674
Sigma-squared 0.695267
Results (Ordinary var-cov estimator)

estimate st.err. t-stat. p-value
1 -0.115 0.084 -1.369 0.174
2 -0.016 0.083 -0.197 0.845
3 -0.105 0.088 -1.189 0.237
*********************************************************
OLS estimation results
Observations 100
R-squared 0.014674
Sigma-squared 0.695267
Results (Het. consistent var-cov estimator)

estimate st.err. t-stat. p-value
1 -0.115 0.084 -1.381 0.170
2 -0.016 0.090 -0.182 0.856
3 -0.105 0.140 -0.751 0.454



• If you run this several times, you will notice that the OLS standard error for the last param-
eter appears to be biased downward, at least comparing to the other two methods, which are
asymptotically valid.

• The true coefficients are zero. With a standard error biased downward, the t-test for lack of
significance will reject more often than it should (the variables really are not significant, but we
will find that they seem to be more often than is due to Type-I error.

• For example, you should see that the p-value for the last coefficient is smaller than 0.10 more
than 10% of the time. Run the script 20 times and you’ll see.

Detection

There exist many tests for the presence of heteroscedasticity. We’ll discuss three methods.

Goldfeld-Quandt The sample is divided in to three parts, with n1, n2 and n3 observations, where
n1 + n2 + n3 = n. The model is estimated using the first and third parts of the sample, separately, so
that β̂1 and β̂3 will be independent. Then we have

ε̂1′ε̂1

σ2 = ε1′M 1ε1

σ2
d→ χ2(n1 −K)

and

ε̂3′ε̂3

σ2 = ε3′M 3ε3

σ2
d→ χ2(n3 −K)



so
ε̂1′ε̂1/(n1 −K)
ε̂3′ε̂3/(n3 −K)

d→ F (n1 −K,n3 −K).

The distributional result is exact if the errors are normally distributed. This test is a two-tailed test.
Alternatively, and probably more conventionally, if one has prior ideas about the possible magnitudes
of the variances of the observations, one could order the observations accordingly, from largest to
smallest. In this case, one would use a conventional one-tailed F-test. Draw picture.

• Ordering the observations is an important step if the test is to have any power.

• The motive for dropping the middle observations is to increase the difference between the average
variance in the subsamples, supposing that there exists heteroscedasticity. This can increase the
power of the test. On the other hand, dropping too many observations will substantially increase
the variance of the statistics ε̂1′ε̂1 and ε̂3′ε̂3. A rule of thumb, based on Monte Carlo experiments
is to drop around 25% of the observations.

• If one doesn’t have any ideas about the form of the het. the test will probably have low power
since a sensible data ordering isn’t available.

White’s test When one has little idea if there exists heteroscedasticity, and no idea of its potential
form, the White test is a possibility. The idea is that if there is homoscedasticity, then

E(ε2
t |xt) = σ2,∀t

so that xt or functions of xt shouldn’t help to explain E(ε2
t ). The test works as follows:

1. Since εt isn’t available, use the consistent estimator ε̂t instead.



2. Regress
ε̂2
t = σ2 + z′tγ + vt

where zt is a P -vector. zt may include some or all of the variables in xt, as well as other variables.
White’s original suggestion was to use xt, plus the set of all unique squares and cross products
of variables in xt.

3. Test the hypothesis that γ = 0. The qF statistic in this case is

qF = P (ESSR − ESSU) /P
ESSU/ (n− P − 1)

Note that ESSR = TSSU , so dividing both numerator and denominator by this we get

qF = (n− P − 1) R2

1−R2

Note that this is the R2 of the artificial regression used to test for heteroscedasticity, not the R2

of the original model.

An asymptotically equivalent statistic, under the null of no heteroscedasticity (so that R2 should tend
to zero), is

nR2 a∼ χ2(P ).

This doesn’t require normality of the errors, though it does assume that the fourth moment of εt is
constant, under the null. Question: why is this necessary?

• The White test has the disadvantage that it may not be very powerful unless the zt vector is



chosen well, and this is hard to do without knowledge of the form of heteroscedasticity.

• It also has the problem that specification errors other than heteroscedasticity may lead to rejec-
tion.

• Note: the null hypothesis of this test may be interpreted as θ = 0 for the variance model
V (ε2

t ) = h(α + z′tθ), where h(·) is an arbitrary function of unknown form. The test is more
general than is may appear from the regression that is used.

Plotting the residuals A very simple method is to simply plot the residuals (or their squares).
Draw pictures here. Like the Goldfeld-Quandt test, this will be more informative if the observations
are ordered according to the suspected form of the heteroscedasticity.

Correction

Correcting for heteroscedasticity requires that a parametric form for Σ(θ) be supplied, and that a
means for estimating θ consistently be determined. The estimation method will be specific to the for
supplied for Σ(θ). We’ll consider two examples. Before this, let’s consider the general nature of GLS
when there is heteroscedasticity.

When we have HET but no AUT, Σ is a diagonal matrix:

Σ =



σ2
1 0 . . . 0
... σ2

2
...

. . . 0
0 · · · 0 σ2

n





Likewise, Σ−1 is diagonal

Σ−1 =



1
σ2

1
0 . . . 0

... 1
σ2

2

...
. . . 0

0 · · · 0 1
σ2
n


and so is the Cholesky decomposition P = chol(Σ−1)

P =



1
σ1

0 . . . 0
... 1

σ2

...
. . . 0

0 · · · 0 1
σn



We need to transform the model, just as before, in the general case:

Py = PXβ + Pε,

or, making the obvious definitions,
y∗ = X∗β + ε∗.

Note that multiplying by P just divides the data for each observation (yi, xi) by the corresponding
standard error of the error term, σi. That is, y∗i = yi/σi and x∗i = xi/σi (note that xi is a K-vector:
we divided each element, including the 1 corresponding to the constant).

This makes sense. Consider Figure 9.2, which shows a true regression line with heteroscedastic
errors. Which sample is more informative about the location of the line? The ones with observations



Figure 9.2: Motivation for GLS correction when there is HET

with smaller variances. So, the GLS solution is equivalent to OLS on the transformed data. By the
transformed data is the original data, weighted by the inverse of the standard error of the observation’s
error term. When the standard error is small, the weight is high, and vice versa. The GLS correction
for the case of HET is also known as weighted least squares, for this reason.



Multiplicative heteroscedasticity

Suppose the model is

yt = x′tβ + εt

σ2
t = E(ε2

t ) = (z′tγ)δ

but the other classical assumptions hold. In this case

ε2
t = (z′tγ)δ + vt

and vt has mean zero. Nonlinear least squares could be used to estimate γ and δ consistently, were
εt observable. The solution is to substitute the squared OLS residuals ε̂2

t in place of ε2
t , since it is

consistent by the Slutsky theorem. Once we have γ̂ and δ̂, we can estimate σ2
t consistently using

σ̂2
t = (z′tγ̂)δ̂

p

→ σ2
t .

In the second step, we transform the model by dividing by the standard deviation:

yt
σ̂t

= x′tβ

σ̂t
+ εt
σ̂t

or
y∗t = x∗′t β + ε∗t .

Asymptotically, this model satisfies the classical assumptions.



• This model is a bit complex in that NLS is required to estimate the model of the variance. A
simpler version would be

yt = x′tβ + εt

σ2
t = E(ε2

t ) = σ2zδt

where zt is a single variable. There are still two parameters to be estimated, and the model of
the variance is still nonlinear in the parameters. However, the search method can be used in this
case to reduce the estimation problem to repeated applications of OLS.

• First, we define an interval of reasonable values for δ, e.g., δ ∈ [0, 3].

• Partition this interval into M equally spaced values, e.g., {0, .1, .2, ..., 2.9, 3}.

• For each of these values, calculate the variable zδmt .

• The regression
ε̂2
t = σ2zδmt + vt

is linear in the parameters, conditional on δm, so one can estimate σ2 by OLS.

• Save the pairs (σ2
m, δm), and the corresponding ESSm. Choose the pair with the minimum ESSm

as the estimate.

• Next, divide the model by the estimated standard deviations.

• Can refine. Draw picture.



• Works well when the parameter to be searched over is low dimensional, as in this case.

Groupwise heteroscedasticity

A common case is where we have repeated observations on each of a number of economic agents:
e.g., 10 years of macroeconomic data on each of a set of countries or regions, or daily observations
of transactions of 200 banks. This sort of data is a pooled cross-section time-series model. It may
be reasonable to presume that the variance is constant over time within the cross-sectional units, but
that it differs across them (e.g., firms or countries of different sizes...). The model is

yit = x′itβ + εit

E(ε2
it) = σ2

i ,∀t

where i = 1, 2, ..., G are the agents, and t = 1, 2, ..., n are the observations on each agent.

• The other classical assumptions are presumed to hold.

• In this case, the variance σ2
i is specific to each agent, but constant over the n observations for

that agent.

• In this model, we assume that E(εitεis) = 0. This is a strong assumption that we’ll relax later.

To correct for heteroscedasticity, just estimate each σ2
i using the natural estimator:

σ̂2
i = 1

n

n∑
t=1

ε̂2
it



• Note that we use 1/n here since it’s possible that there are more than n regressors, so n − K
could be negative. Asymptotically the difference is unimportant.

• With each of these, transform the model as usual:

yit
σ̂i

= x′itβ

σ̂i
+ εit
σ̂i

Do this for each cross-sectional group. This transformed model satisfies the classical assumptions,
asymptotically.

Example: the Nerlove model (again!)

Remember the Nerlove data - see sections 3.8 and 5.8. Let’s check the Nerlove data for evidence
of heteroscedasticity. In what follows, we’re going to use the model with the constant and output
coefficient varying across 5 groups, but with the input price coefficients fixed (see Equation 5.5 for the
rationale behind this). Figure 9.3, which is generated by the Octave program GLS/NerloveResiduals.m
plots the residuals. We can see pretty clearly that the error variance is larger for small firms than for
larger firms.

Now let’s try out some tests to formally check for heteroscedasticity. The Octave program GLS/HetTests.m
performs the White and Goldfeld-Quandt tests, using the above model. The results are

Value p-value
White’s test 61.903 0.000

Value p-value
GQ test 10.886 0.000

http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/NerloveResiduals.m
http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/HetTests.m


Figure 9.3: Residuals, Nerlove model, sorted by firm size
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All in all, it is very clear that the data are heteroscedastic. That means that OLS estimation is
not efficient, and tests of restrictions that ignore heteroscedasticity are not valid. The previous tests
(CRTS, HOD1 and the Chow test) were calculated assuming homoscedasticity. The Octave pro-
gram GLS/NerloveRestrictions-Het.m uses the Wald test to check for CRTS and HOD1, but using a
heteroscedastic-consistent covariance estimator.1 The results are

Testing HOD1
Value p-value

Wald test 6.161 0.013

Testing CRTS
Value p-value

Wald test 20.169 0.001

We see that the previous conclusions are altered - both CRTS is and HOD1 are rejected at the 5%
level. Maybe the rejection of HOD1 is due to to Wald test’s tendency to over-reject?

From the previous plot, it seems that the variance of ε is a decreasing function of output. Suppose
that the 5 size groups have different error variances (heteroscedasticity by groups):

V ar(εi) = σ2
j ,

1By the way, notice that GLS/NerloveResiduals.m and GLS/HetTests.m use the restricted LS estimator directly to restrict the fully general
model with all coefficients varying to the model with only the constant and the output coefficient varying. But GLS/NerloveRestrictions-Het.m
estimates the model by substituting the restrictions into the model. The methods are equivalent, but the second is more convenient and easier
to understand.

http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/NerloveRestrictionsHet.m
http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/NerloveResiduals.m
http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/HetTests.m
http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/NerloveRestrictions-Het.m


where j = 1 if i = 1, 2, ..., 29, etc., as before. The Octave script GLS/NerloveGLS.m estimates the
model using GLS (through a transformation of the model so that OLS can be applied). The estimation
results are i

*********************************************************
OLS estimation results
Observations 145
R-squared 0.958822
Sigma-squared 0.090800

Results (Het. consistent var-cov estimator)

estimate st.err. t-stat. p-value
constant1 -1.046 1.276 -0.820 0.414
constant2 -1.977 1.364 -1.450 0.149
constant3 -3.616 1.656 -2.184 0.031
constant4 -4.052 1.462 -2.771 0.006
constant5 -5.308 1.586 -3.346 0.001
output1 0.391 0.090 4.363 0.000
output2 0.649 0.090 7.184 0.000
output3 0.897 0.134 6.688 0.000
output4 0.962 0.112 8.612 0.000
output5 1.101 0.090 12.237 0.000
labor 0.007 0.208 0.032 0.975

http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/NerloveGLS.m


fuel 0.498 0.081 6.149 0.000
capital -0.460 0.253 -1.818 0.071

*********************************************************

*********************************************************
OLS estimation results
Observations 145
R-squared 0.987429
Sigma-squared 1.092393

Results (Het. consistent var-cov estimator)

estimate st.err. t-stat. p-value
constant1 -1.580 0.917 -1.723 0.087
constant2 -2.497 0.988 -2.528 0.013
constant3 -4.108 1.327 -3.097 0.002
constant4 -4.494 1.180 -3.808 0.000
constant5 -5.765 1.274 -4.525 0.000
output1 0.392 0.090 4.346 0.000
output2 0.648 0.094 6.917 0.000
output3 0.892 0.138 6.474 0.000
output4 0.951 0.109 8.755 0.000



output5 1.093 0.086 12.684 0.000
labor 0.103 0.141 0.733 0.465
fuel 0.492 0.044 11.294 0.000
capital -0.366 0.165 -2.217 0.028

*********************************************************

Testing HOD1
Value p-value

Wald test 9.312 0.002

The first panel of output are the OLS estimation results, which are used to consistently estimate the
σ2
j . The second panel of results are the GLS estimation results. Some comments:

• The R2 measures are not comparable - the dependent variables are not the same. The measure
for the GLS results uses the transformed dependent variable. One could calculate a comparable
R2 measure, but I have not done so.

• The differences in estimated standard errors (smaller in general for GLS) can be interpreted as
evidence of improved efficiency of GLS, since the OLS standard errors are calculated using the
Huber-White estimator. They would not be comparable if the ordinary (inconsistent) estimator
had been used.

• Note that the previously noted pattern in the output coefficients persists. The nonconstant
CRTS result is robust.



• The coefficient on capital is now negative and significant at the 3% level. That seems to indicate
some kind of problem with the model or the data, or economic theory.

• Note that HOD1 is now rejected. Problem of Wald test over-rejecting? Specification error in
model?

9.5 Autocorrelation

Autocorrelation, which is the serial correlation of the error term, is a problem that is usually associated
with time series data, but also can affect cross-sectional data. For example, a shock to oil prices will
simultaneously affect all countries, so one could expect contemporaneous correlation of macroeconomic
variables across countries.

Example

Consider the Keeling-Whorf data on atmospheric CO2 concentrations an Mauna Loa, Hawaii (see
http://en.wikipedia.org/wiki/Keeling_Curve and http://cdiac.ornl.gov/ftp/ndp001/maunaloa.
txt).

From the file maunaloa.txt: ”THE DATA FILE PRESENTED IN THIS SUBDIRECTORY CON-
TAINS MONTHLY AND ANNUAL ATMOSPHERIC CO2 CONCENTRATIONS DERIVED FROM
THE SCRIPPS INSTITUTION OF OCEANOGRAPHY’S (SIO’s) CONTINUOUS MONITORING
PROGRAM AT MAUNA LOA OBSERVATORY, HAWAII. THIS RECORD CONSTITUTES THE
LONGEST CONTINUOUS RECORDOF ATMOSPHERIC CO2 CONCENTRATIONS AVAILABLE
IN THEWORLD. MONTHLY ANDANNUAL AVERAGEMOLE FRACTIONS OF CO2 INWATER-

http://en.wikipedia.org/wiki/Keeling_Curve
http://cdiac.ornl.gov/ftp/ndp001/maunaloa.txt
http://cdiac.ornl.gov/ftp/ndp001/maunaloa.txt


VAPOR-FREE AIR ARE GIVEN FROM MARCH 1958 THROUGH DECEMBER 2003, EXCEPT
FOR A FEW INTERRUPTIONS.”



The data is available in Octave format at CO2.data .
If we fit the model CO2t = β1 + β2t+ εt, we get the results

octave:8> CO2Example
warning: load: file found in load path

*********************************************************
OLS estimation results
Observations 468
R-squared 0.979239
Sigma-squared 5.696791

Results (Het. consistent var-cov estimator)

estimate st.err. t-stat. p-value
1 316.918 0.227 1394.406 0.000
2 0.121 0.001 141.521 0.000

*********************************************************

It seems pretty clear that CO2 concentrations have been going up in the last 50 years, surprise, surprise.
Let’s look at a residual plot for the last 3 years of the data, see Figure 9.4. Note that there is a very
predictable pattern. This is pretty strong evidence that the errors of the model are not independent
of one another, which means there seems to be autocorrelation.

http://pareto.uab.es/mcreel/Econometrics/Examples/Data/CO2.data


Figure 9.4: Residuals from time trend for CO2 data



Causes

Autocorrelation is the existence of correlation across the error term:

E(εtεs) 6= 0, t 6= s.

Why might this occur? Plausible explanations include

1. Lags in adjustment to shocks. In a model such as

yt = x′tβ + εt,

one could interpret x′tβ as the equilibrium value. Suppose xt is constant over a number of
observations. One can interpret εt as a shock that moves the system away from equilibrium. If
the time needed to return to equilibrium is long with respect to the observation frequency, one
could expect εt+1 to be positive, conditional on εt positive, which induces a correlation.

2. Unobserved factors that are correlated over time. The error term is often assumed to correspond
to unobservable factors. If these factors are correlated, there will be autocorrelation.

3. Misspecification of the model. Suppose that the DGP is

yt = β0 + β1xt + β2x
2
t + εt

but we estimate
yt = β0 + β1xt + εt



Figure 9.5: Autocorrelation induced by misspecification

The effects are illustrated in Figure 9.5.

Effects on the OLS estimator

The variance of the OLS estimator is the same as in the case of heteroscedasticity - the standard
formula does not apply. The correct formula is given in equation 9.1. Next we discuss two GLS
corrections for OLS. These will potentially induce inconsistency when the regressors are nonstochastic



(see Chapter 6) and should either not be used in that case (which is usually the relevant case) or used
with caution. The more recommended procedure is discussed in section 9.5.

AR(1)

There are many types of autocorrelation. We’ll consider two examples. The first is the most commonly
encountered case: autoregressive order 1 (AR(1) errors. The model is

yt = x′tβ + εt

εt = ρεt−1 + ut

ut ∼ iid(0, σ2
u)

E(εtus) = 0, t < s

We assume that the model satisfies the other classical assumptions.

• We need a stationarity assumption: |ρ| < 1. Otherwise the variance of εt explodes as t increases,
so standard asymptotics will not apply.

• By recursive substitution we obtain

εt = ρεt−1 + ut

= ρ (ρεt−2 + ut−1) + ut

= ρ2εt−2 + ρut−1 + ut

= ρ2 (ρεt−3 + ut−2) + ρut−1 + ut



In the limit the lagged ε drops out, since ρm → 0 as m→∞, so we obtain

εt =
∞∑
m=0

ρmut−m

With this, the variance of εt is found as

E(ε2
t ) = σ2

u

∞∑
m=0

ρ2m

= σ2
u

1− ρ2

• If we had directly assumed that εt were covariance stationary, we could obtain this using

V (εt) = ρ2E(ε2
t−1) + 2ρE(εt−1ut) + E(u2

t )
= ρ2V (εt) + σ2

u,

so
V (εt) = σ2

u

1− ρ2

• The variance is the 0th order autocovariance: γ0 = V (εt)

• Note that the variance does not depend on t



Likewise, the first order autocovariance γ1 is

Cov(εt, εt−1) = γs = E((ρεt−1 + ut) εt−1)
= ρV (εt)

= ρσ2
u

1− ρ2

• Using the same method, we find that for s < t

Cov(εt, εt−s) = γs = ρsσ2
u

1− ρ2

• The autocovariances don’t depend on t: the process {εt} is covariance stationary

The correlation ( in general, for r.v.’s x and y) is defined as

corr(x, y) = cov(x, y)
se(x)se(y)

but in this case, the two standard errors are the same, so the s-order autocorrelation ρs is

ρs = ρs



• All this means that the overall matrix Σ has the form

Σ = σ2
u

1− ρ2︸ ︷︷ ︸
this is the variance



1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

... . . . ...
. . . ρ

ρn−1 · · · 1


︸ ︷︷ ︸

this is the correlation matrix

So we have homoscedasticity, but elements off the main diagonal are not zero. All of this depends
only on two parameters, ρ and σ2

u. If we can estimate these consistently, we can apply FGLS.

It turns out that it’s easy to estimate these consistently. The steps are

1. Estimate the model yt = x′tβ + εt by OLS.

2. Take the residuals, and estimate the model

ε̂t = ρε̂t−1 + u∗t

Since ε̂t
p→ εt, this regression is asymptotically equivalent to the regression

εt = ρεt−1 + ut

which satisfies the classical assumptions. Therefore, ρ̂ obtained by applying OLS to ε̂t = ρε̂t−1+u∗t



is consistent. Also, since u∗t
p→ ut, the estimator

σ̂2
u = 1

n

n∑
t=2

(û∗t )
2 p→ σ2

u

3. With the consistent estimators σ̂2
u and ρ̂, form Σ̂ = Σ(σ̂2

u, ρ̂) using the previous structure of Σ,
and estimate by FGLS. Actually, one can omit the factor σ̂2

u/(1− ρ2), since it cancels out in the
formula

β̂FGLS =
(
X ′Σ̂−1X

)−1
(X ′Σ̂−1y).

• One can iterate the process, by taking the first FGLS estimator of β, re-estimating ρ and σ2
u,

etc. If one iterates to convergences it’s equivalent to MLE (supposing normal errors).

• An asymptotically equivalent approach is to simply estimate the transformed model

yt − ρ̂yt−1 = (xt − ρ̂xt−1)′β + u∗t

using n− 1 observations (since y0 and x0 aren’t available). This is the method of Cochrane and
Orcutt. Dropping the first observation is asymptotically irrelevant, but it can be very important
in small samples. One can recuperate the first observation by putting

y∗1 = y1
√

1− ρ̂2

x∗1 = x1
√

1− ρ̂2

This somewhat odd-looking result is related to the Cholesky factorization of Σ−1. See Davidson
and MacKinnon, pg. 348-49 for more discussion. Note that the variance of y∗1 is σ2

u, asymptoti-



cally, so we see that the transformed model will be homoscedastic (and nonautocorrelated, since
the u′s are uncorrelated with the y′s, in different time periods.

MA(1)

The linear regression model with moving average order 1 errors is

yt = x′tβ + εt

εt = ut + φut−1

ut ∼ iid(0, σ2
u)

E(εtus) = 0, t < s

In this case,

V (εt) = γ0 = E
[
(ut + φut−1)2]

= σ2
u + φ2σ2

u

= σ2
u(1 + φ2)

Similarly

γ1 = E [(ut + φut−1) (ut−1 + φut−2)]
= φσ2

u



and

γ2 = [(ut + φut−1) (ut−2 + φut−3)]
= 0

so in this case

Σ = σ2
u



1 + φ2 φ 0 · · · 0
φ 1 + φ2 φ

0 φ . . . ...
... . . . φ

0 · · · φ 1 + φ2


Note that the first order autocorrelation is

ρ1 = φσ2
u

σ2
u(1+φ2) = γ1

γ0

= φ

(1 + φ2)

• This achieves a maximum at φ = 1 and a minimum at φ = −1, and the maximal and minimal
autocorrelations are 1/2 and -1/2. Therefore, series that are more strongly autocorrelated can’t
be MA(1) processes.

Again the covariance matrix has a simple structure that depends on only two parameters. The problem
in this case is that one can’t estimate φ using OLS on

ε̂t = ut + φut−1



because the ut are unobservable and they can’t be estimated consistently. However, there is a simple
way to estimate the parameters.

• Since the model is homoscedastic, we can estimate

V (εt) = σ2
ε = σ2

u(1 + φ2)

using the typical estimator:
σ̂2
ε = ̂σ2

u(1 + φ2) = 1
n

n∑
t=1

ε̂2
t

• By the Slutsky theorem, we can interpret this as defining an (unidentified) estimator of both σ2
u

and φ, e.g., use this as
σ̂2
u(1 + φ̂2) = 1

n

n∑
t=1

ε̂2
t

However, this isn’t sufficient to define consistent estimators of the parameters, since it’s uniden-
tified - two unknowns, one equation.

• To solve this problem, estimate the covariance of εt and εt−1 using

Ĉov(εt, εt−1) = φ̂σ2
u = 1

n

n∑
t=2

ε̂tε̂t−1

This is a consistent estimator, following a LLN (and given that the epsilon hats are consistent
for the epsilons). As above, this can be interpreted as defining an unidentified estimator of the
two parameters:

φ̂σ̂2
u = 1

n

n∑
t=2

ε̂tε̂t−1



• Now solve these two equations to obtain identified (and therefore consistent) estimators of both
φ and σ2

u. Define the consistent estimator

Σ̂ = Σ(φ̂, σ̂2
u)

following the form we’ve seen above, and transform the model using the Cholesky decomposition.
The transformed model satisfies the classical assumptions asymptotically.

• Note: there is no guarantee that Σ estimated using the above method will be positive definite,
which may pose a problem. Another method would be to use ML estimation, if one is willing to
make distributional assumptions regarding the white noise errors.

Monte Carlo example: AR1

Let’s look at a Monte Carlo study that compares OLS and GLS when we have AR1 errors. The model
is

yt = 1 + xt + εt

εt = ρεt−1 + ut

with ρ = 0.9. The sample size is n = 30, and 1000 Monte Carlo replications are done. The Octave
script is GLS/AR1Errors.m. Figure 9.6 shows histograms of the estimated coefficient of x minus the
true value. We can see that the GLS histogram is much more concentrated about 0, which is indicative
of the efficiency of GLS relative to OLS.

http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/AR1Errors.m


Figure 9.6: Efficiency of OLS and FGLS, AR1 errors
(a) OLS (b) GLS



Asymptotically valid inferences with autocorrelation of unknown form

See Hamilton Ch. 10, pp. 261-2 and 280-84.
When the form of autocorrelation is unknown, one may decide to use the OLS estimator, without

correction. We’ve seen that this estimator has the limiting distribution

√
n
(
β̂ − β

)
d→ N

(
0, Q−1

X ΩQ−1
X

)

where, as before, Ω is

Ω = lim
n→∞ E

X ′εε′X
n


We need a consistent estimate of Ω. Define mt = xtεt (recall that xt is defined as a K × 1 vector).
Note that

X ′ε =
[
x1 x2 · · · xn

]


ε1

ε2
...
εn


=

n∑
t=1

xtεt

=
n∑
t=1

mt

so that
Ω = lim

n→∞
1
n
E
 n∑

t=1
mt

 n∑
t=1

m′t





We assume that mt is covariance stationary (so that the covariance between mt and mt−s does not
depend on t).

Define the v − th autocovariance of mt as

Γv = E(mtm
′
t−v).

Note that E(mtm
′
t+v) = Γ′v. (show this with an example). In general, we expect that:

• mt will be autocorrelated, since εt is potentially autocorrelated:

Γv = E(mtm
′
t−v) 6= 0

Note that this autocovariance does not depend on t, due to covariance stationarity.

• contemporaneously correlated ( E(mitmjt) 6= 0 ), since the regressors in xt will in general be
correlated (more on this later).

• and heteroscedastic (E(m2
it) = σ2

i , which depends upon i ), again since the regressors will have
different variances.

While one could estimate Ω parametrically, we in general have little information upon which to base
a parametric specification. Recent research has focused on consistent nonparametric estimators of Ω.

Now define
Ωn = E 1

n

 n∑
t=1

mt

 n∑
t=1

m′t





We have (show that the following is true, by expanding sum and shifting rows to left)

Ωn = Γ0 + n− 1
n

(Γ1 + Γ′1) + n− 2
n

(Γ2 + Γ′2) · · ·+
1
n

(Γn−1 + Γ′n−1)

The natural, consistent estimator of Γv is

Γ̂v = 1
n

n∑
t=v+1

m̂tm̂
′
t−v.

where
m̂t = xtε̂t

(note: one could put 1/(n − v) instead of 1/n here). So, a natural, but inconsistent, estimator of Ωn

would be

Ω̂n = Γ̂0 + n− 1
n

(
Γ̂1 + Γ̂′1

)
+ n− 2

n

(
Γ̂2 + Γ̂′2

)
+ · · ·+ 1

n

(
Γ̂n−1 + Γ̂′n−1

)

= Γ̂0 +
n−1∑
v=1

n− v
n

(
Γ̂v + Γ̂′v

)
.

This estimator is inconsistent in general, since the number of parameters to estimate is more than
the number of observations, and increases more rapidly than n, so information does not build up as
n→∞.

On the other hand, supposing that Γv tends to zero sufficiently rapidly as v tends to∞, a modified
estimator

Ω̂n = Γ̂0 +
q(n)∑
v=1

(
Γ̂v + Γ̂′v

)
,



where q(n) p→∞ as n→∞ will be consistent, provided q(n) grows sufficiently slowly.

• The assumption that autocorrelations die off is reasonable in many cases. For example, the
AR(1) model with |ρ| < 1 has autocorrelations that die off.

• The term n−v
n can be dropped because it tends to one for v < q(n), given that q(n) increases

slowly relative to n.

• A disadvantage of this estimator is that is may not be positive definite. This could cause one to
calculate a negative χ2 statistic, for example!

• Newey andWest proposed and estimator (Econometrica, 1987) that solves the problem of possible
nonpositive definiteness of the above estimator. Their estimator is

Ω̂n = Γ̂0 +
q(n)∑
v=1

[
1− v

q + 1

] (
Γ̂v + Γ̂′v

)
.

This estimator is p.d. by construction. The condition for consistency is that n−1/4q(n) → 0.
Note that this is a very slow rate of growth for q. This estimator is nonparametric - we’ve placed
no parametric restrictions on the form of Ω. It is an example of a kernel estimator.

Finally, since Ωn has Ω as its limit, Ω̂n
p→ Ω. We can now use Ω̂n and Q̂X = 1

nX
′X to consistently

estimate the limiting distribution of the OLS estimator under heteroscedasticity and autocorrelation
of unknown form. With this, asymptotically valid tests are constructed in the usual way.

Testing for autocorrelation

Durbin-Watson test



The Durbin-Watson test is not strictly valid in most situations where we would like to use it.
Nevertheless, it is encountered often enough so that one should know something about it. The Durbin-
Watson test statistic is

DW =
∑n
t=2 (ε̂t − ε̂t−1)2∑n

t=1 ε̂
2
t

=
∑n
t=2 (ε̂2

t − 2ε̂tε̂t−1 + ε̂2
t−1)∑n

t=1 ε̂
2
t

• The null hypothesis is that the first order autocorrelation of the errors is zero: H0 : ρ1 = 0. The
alternative is of course HA : ρ1 6= 0. Note that the alternative is not that the errors are AR(1),
since many general patterns of autocorrelation will have the first order autocorrelation different
than zero. For this reason the test is useful for detecting autocorrelation in general. For the
same reason, one shouldn’t just assume that an AR(1) model is appropriate when the DW test
rejects the null.

• Under the null, the middle term tends to zero, and the other two tend to one, so DW p→ 2.

• Supposing that we had an AR(1) error process with ρ = 1. In this case the middle term tends
to −2, so DW p→ 0

• Supposing that we had an AR(1) error process with ρ = −1. In this case the middle term tends
to 2, so DW p→ 4

• These are the extremes: DW always lies between 0 and 4.

• The distribution of the test statistic depends on the matrix of regressors, X, so tables can’t give



exact critical values. The give upper and lower bounds, which correspond to the extremes that
are possible. See Figure 9.7. There are means of determining exact critical values conditional on
X.

• Note that DW can be used to test for nonlinearity (add discussion).

• The DW test is based upon the assumption that the matrix X is fixed in repeated samples. This
is often unreasonable in the context of economic time series, which is precisely the context where
the test would have application. It is possible to relate the DW test to other test statistics which
are valid without strict exogeneity.

Breusch-Godfrey test
This test uses an auxiliary regression, as does the White test for heteroscedasticity. The regression

is
ε̂t = x′tδ + γ1ε̂t−1 + γ2ε̂t−2 + · · ·+ γP ε̂t−P + vt

and the test statistic is the nR2 statistic, just as in the White test. There are P restrictions, so the
test statistic is asymptotically distributed as a χ2(P ).

• The intuition is that the lagged errors shouldn’t contribute to explaining the current error if
there is no autocorrelation.

• xt is included as a regressor to account for the fact that the ε̂t are not independent even if the
εt are. This is a technicality that we won’t go into here.

• This test is valid even if the regressors are stochastic and contain lagged dependent variables, so
it is considerably more useful than the DW test for typical time series data.



Figure 9.7: Durbin-Watson critical values



• The alternative is not that the model is an AR(P), following the argument above. The alternative
is simply that some or all of the first P autocorrelations are different from zero. This is compatible
with many specific forms of autocorrelation.

Lagged dependent variables and autocorrelation

We’ve seen that the OLS estimator is consistent under autocorrelation, as long as plimX ′ε
n = 0. This

will be the case when E(X ′ε) = 0, following a LLN. An important exception is the case where X
contains lagged y′s and the errors are autocorrelated.

Example 22. Dynamic model with MA1 errors. Consider the model

yt = α + ρyt−1 + βxt + εt

εt = υt + φυt−1

We can easily see that a regressor is not weakly exogenous:

E(yt−1εt) = E {(α + ρyt−2 + βxt−1 + υt−1 + φυt−2)(υt + φυt−1)}
6= 0

since one of the terms is E(φυ2
t−1) which is clearly nonzero. In this case E(xtεt) 6= 0, and therefore

plimX ′ε
n 6= 0. Since

plimβ̂ = β + plim
X ′ε

n



the OLS estimator is inconsistent in this case. One needs to estimate by instrumental variables (IV),
which we’ll get to later

The Octave script GLS/DynamicMA.m does a Monte Carlo study. The sample size is n = 100.
The true coefficients are α = 1 ρ = 0.9 and β = 1. The MA parameter is φ = −0.95. Figure 9.8 gives
the results. You can see that the constant and the autoregressive parameter have a lot of bias. By
re-running the script with φ = 0, you will see that much of the bias disappears (not all - why?).

http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/DynamicMA.m


Examples

Nerlove model, yet again The Nerlove model uses cross-sectional data, so one may not think of
performing tests for autocorrelation. However, specification error can induce autocorrelated errors.
Consider the simple Nerlove model

lnC = β1 + β2 lnQ+ β3 lnPL + β4 lnPF + β5 lnPK + ε

and the extended Nerlove model

lnC =
5∑
j=1

αjDj +
5∑
j=1

γjDj lnQ+ βL lnPL + βF lnPF + βK lnPK + ε

discussed around equation 5.5. If you have done the exercises, you have seen evidence that the extended
model is preferred. So if it is in fact the proper model, the simple model is misspecified. Let’s check
if this misspecification might induce autocorrelated errors.

The Octave program GLS/NerloveAR.m estimates the simple Nerlove model, and plots the resid-
uals as a function of lnQ, and it calculates a Breusch-Godfrey test statistic. The residual plot is in
Figure 9.9 , and the test results are:

Value p-value
Breusch-Godfrey test 34.930 0.000

Clearly, there is a problem of autocorrelated residuals.
Repeat the autocorrelation tests using the extended Nerlove model (Equation 5.5) to see the prob-

lem is solved.

http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/NerloveAR.m


Figure 9.8: Dynamic model with MA(1) errors
(a) α̂− α

(b) ρ̂− ρ

(c) β̂ − β



Figure 9.9: Residuals of simple Nerlove model
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Klein model Klein’s Model I is a simple macroeconometric model. One of the equations in the
model explains consumption (C) as a function of profits (P ), both current and lagged, as well as the
sum of wages in the private sector (W p) and wages in the government sector (W g). Have a look at the
README file for this data set. This gives the variable names and other information.

Consider the model
Ct = α0 + α1Pt + α2Pt−1 + α3(W p

t +W g
t ) + ε1t

The Octave program GLS/Klein.m estimates this model by OLS, plots the residuals, and performs
the Breusch-Godfrey test, using 1 lag of the residuals. The estimation and test results are:

*********************************************************
OLS estimation results
Observations 21
R-squared 0.981008
Sigma-squared 1.051732

Results (Ordinary var-cov estimator)

estimate st.err. t-stat. p-value
Constant 16.237 1.303 12.464 0.000
Profits 0.193 0.091 2.115 0.049
Lagged Profits 0.090 0.091 0.992 0.335
Wages 0.796 0.040 19.933 0.000

*********************************************************

http://pareto.uab.es/mcreel/Econometrics/Examples/Data/klein_readme.txt
http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/Klein.m


Value p-value
Breusch-Godfrey test 1.539 0.215

and the residual plot is in Figure 9.10. The test does not reject the null of nonautocorrelatetd errors,
but we should remember that we have only 21 observations, so power is likely to be fairly low. The
residual plot leads me to suspect that there may be autocorrelation - there are some significant runs
below and above the x-axis. Your opinion may differ.

Since it seems that there may be autocorrelation, lets’s try an AR(1) correction. The Octave
program GLS/KleinAR1.m estimates the Klein consumption equation assuming that the errors follow
the AR(1) pattern. The results, with the Breusch-Godfrey test for remaining autocorrelation are:

*********************************************************
OLS estimation results
Observations 21
R-squared 0.967090
Sigma-squared 0.983171

Results (Ordinary var-cov estimator)

estimate st.err. t-stat. p-value
Constant 16.992 1.492 11.388 0.000
Profits 0.215 0.096 2.232 0.039
Lagged Profits 0.076 0.094 0.806 0.431
Wages 0.774 0.048 16.234 0.000

http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/KleinAR1.m


Figure 9.10: OLS residuals, Klein consumption equation
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*********************************************************
Value p-value

Breusch-Godfrey test 2.129 0.345

• The test is farther away from the rejection region than before, and the residual plot is a bit more
favorable for the hypothesis of nonautocorrelated residuals, IMHO. For this reason, it seems that
the AR(1) correction might have improved the estimation.

• Nevertheless, there has not been much of an effect on the estimated coefficients nor on their
estimated standard errors. This is probably because the estimated AR(1) coefficient is not very
large (around 0.2)

• The existence or not of autocorrelation in this model will be important later, in the section on
simultaneous equations.

9.6 Exercises

1. Comparing the variances of the OLS and GLS estimators, I claimed that the following holds:

V ar(β̂)− V ar(β̂GLS) = AΣA′

Verify that this is true.



2. Show that the GLS estimator can be defined as

β̂GLS = arg min(y −Xβ)′Σ−1(y −Xβ)

3. The limiting distribution of the OLS estimator with heteroscedasticity of unknown form is

√
n
(
β̂ − β

)
d→ N

(
0, Q−1

X ΩQ−1
X

)
,

where
lim
n→∞ E

X ′εε′X
n

 = Ω

Explain why
Ω̂ = 1

n

n∑
t=1

xtx
′
tε̂

2
t

is a consistent estimator of this matrix.

4. Define the v − th autocovariance of a covariance stationary process mt, where E(mt) = 0 as

Γv = E(mtm
′
t−v).

Show that E(mtm
′
t+v) = Γ′v.

5. For the Nerlove model with dummies and interactions discussed above (see Section 9.4 and
equation 5.5)

lnC =
5∑
j=1

αjDj +
5∑
j=1

γjDj lnQ+ βL lnPL + βF lnPF + βK lnPK + ε



above, we did a GLS correction based on the assumption that there is HET by groups (V (εt|xt) =
σ2
j ). Let’s assume that this model is correctly specified, except that there may or may not be

HET, and if it is present it may be of the form assumed, or perhaps of some other form. What
happens if the assumed form of HET is incorrect?

(a) Is the ”FGLS” based on the assumed form of HET consistent?

(b) Is it efficient? Is it likely to be efficient with respect to OLS?

(c) Are hypothesis tests using the ”FGLS” estimator valid? If not, can they be made valid
following some procedure? Explain.

(d) Are the t-statistics reported in Section 9.4 valid?

(e) Which estimator do you prefer, the OLS estimator or the FGLS estimator? Discuss.

6. Perhaps we can be a little more parsimonious with the Nerlove data (nerlove.data ), rather
than using so many parameters to account for non-constant returns to scale, and to account for
heteroscedasticity. Consider the original model

lnC = β + βQ lnQ+ βL lnPL + βF lnPF + βK lnPK + ε

(a) Estimate by OLS, plot the residuals, and test for autocorrelation and heteroscedasticity.
Explain your findings.

(b) Consider the model

lnC = β + βQ lnQ+ γQ (lnQ)2 + βL lnPL + βF lnPF + βK lnPK + ε

http://pareto.uab.es/mcreel/Econometrics/Examples/Data/nerlove.data


i. Explain how this model can account for non-constant returns to scale.
ii. estimate this model, and test for autocorrelation and heteroscedasticity. You should

find that there is HET, but no strong evidence of AUT. Why is this the case?
iii. Do a GLS correction where it is assumed that V (εi) = σ2

(lnQi)2 . In GRETL, there is a
weighted least squares option that you can use. Why does this assumed form of HET
make sense?

iv. plot the weighted residuals versus output. Is there evidence of HET, or has the correc-
tion eliminated the problem?

v. plot the fitted values for returns to scale, for all of the firms.

7. The hall.csv or hall.gdt dataset contains monthly observation on 3 variables: the consumption
ratio ct/ct−1; the gross return of an equally weighted index of assets ewrt; and the gross return
of the same index, but weighted by value, vwrt. The idea is that a representative consumer may
finance consumption by investing in assets. Present wealth is used for two things: consumption
and investment. The return on investment defines wealth in the next period, and the process
repeats. For the moment, explore the properties of the variables.

(a) Are the variances constant over time?

(b) Do the variables appear to be autocorrelated? Hint: regress a variable on its own lags.

(c) Do the variable seem to be normally distributed?

(d) Look at the properties of the growth rates of the variables: repeat a-c for growth rates. The
growth rate of a variable xt is given by log (xt/xt−1).

http://pareto.uab.es/mcreel/Econometrics/Examples/Data/hall.csv
http://pareto.uab.es/mcreel/Econometrics/Examples/Data/hall.gdt


8. Consider the model

yt = C + A1yt−1 + εt

E(εtε′t) = Σ
E(εtε′s) = 0, t 6= s

where yt and εt are G × 1 vectors, C is a G × 1 of constants, and A1is a G × G matrix of
parameters. The matrix Σ is a G×G covariance matrix. Assume that we have n observations.
This is a vector autoregressive model, of order 1 - commonly referred to as a VAR(1) model.

(a) Show how the model can be written in the form Y = Xβ + ν, where Y is a Gn× 1 vector,
β is a (G + G2)×1 parameter vector, and the other items are conformable. What is the
structure of X? What is the structure of the covariance matrix of ν?

(b) This model has HET and AUT. Verify this statement.

(c) Set G = 2,C = (0 0)′A =
 0.8 −0.1

0.2 0.5

, Σ =
 1 0.5

0.5 1

. Simulate data from this model,

then estimate the model using OLS and feasible GLS. You should find that the two estima-
tors are identical, which might seem surprising, given that there is HET and AUT.

(d) (optional, and advanced). Prove analytically that the OLS and GLS estimators are identical.
Hint: this model is of the form of seemingly unrelated regressions.

9. Consider the model

yt = α + ρ1yt−1 + ρ2yt−2 + εt



where εt is a N(0, 1) white noise error. This is an autogressive model of order 2 (AR2) model.
Suppose that data is generated from the AR2 model, but the econometrician mistakenly decides
to estimate an AR1 model (yt = α + ρ1yt−1 + εt).

(a) simulate data from the AR2 model, setting ρ1 = 0.5 and ρ2 = 0.4, using a sample size of
n = 30.

(b) Estimate the AR1 model by OLS, using the simulated data

(c) test the hypothesis that ρ1 = 0.5

(d) test for autocorrelation using the test of your choice

(e) repeat the above steps 10000 times.

i. What percentage of the time does a t-test reject the hypothesis that ρ1 = 0.5?
ii. What percentage of the time is the hypothesis of no autocorrelation rejected?

(f) discuss your findings. Include a residual plot for a representative sample.

10. Modify the script given in Subsection 9.5 so that the first observation is dropped, rather than
given special treatment. This corresponds to using the Cochrane-Orcutt method, whereas the
script as provided implements the Prais-Winsten method. Check if there is an efficiency loss
when the first observation is dropped.



Chapter 10

Endogeneity and simultaneity

Several times we’ve encountered cases where correlation between regressors and the error term lead
to biasedness and inconsistency of the OLS estimator. Cases include autocorrelation with lagged
dependent variables (Example 22), measurement error in the regressors (Example 19) and missing
regressors (Section 7.4). Another important case we have not seen yet is that of simultaneous equations.
The cause is different, but the effect is the same: bias and inconsistency when OLS is applied to a
single equation. The basic idea is presented in Figure 10.1. A simple regression will estimate the
overall effect of x on y. If we’re interested in the direct effect, β, then we have a problem when the
overall effect and the direct effect differ.

10.1 Simultaneous equations

Up until now our model is
y = Xβ + ε

235



Figure 10.1: Exogeneity and Endogeneity (adapted from Cameron and Trivedi)



where we assume weak exogeneity of the regressors, so that E(xtεt) = 0. With weak exogeneity, the
OLS estimator has desirable large sample properties (consistency, asymptotic normality).

Simultaneous equations is a different prospect. An example of a simultaneous equation system is
a simple supply-demand system:

Demand: qt = α1 + α2pt + α3yt + ε1t

Supply: qt = β1 + β2pt + ε2t

E

 ε1t

ε2t

 [ ε1t ε2t

] =
 σ11 σ12

· σ22


≡ Σ,∀t

The presumption is that qt and pt are jointly determined at the same time by the intersection of these
equations. We’ll assume that yt is determined by some unrelated process. It’s easy to see that we have
correlation between regressors and errors. Solving for pt :

α1 + α2pt + α3yt + ε1t = β1 + β2pt + ε2t

β2pt − α2pt = α1 − β1 + α3yt + ε1t − ε2t

pt = α1 − β1

β2 − α2
+ α3yt
β2 − α2

+ ε1t − ε2t

β2 − α2

Now consider whether pt is uncorrelated with ε1t :

E(ptε1t) = E
{(
α1 − β1

β2 − α2
+ α3yt
β2 − α2

+ ε1t − ε2t

β2 − α2

)
ε1t

}

= σ11 − σ12

β2 − α2



Because of this correlation, weak exogeneity does not hold, and OLS estimation of the demand equation
will be biased and inconsistent. The same applies to the supply equation, for the same reason.

In this model, qt and pt are the endogenous varibles (endogs), that are determined within the
system. yt is an exogenous variable (exogs). These concepts are a bit tricky, and we’ll return to it in
a minute. First, some notation. Suppose we group together current endogs in the vector Yt. If there
are G endogs, Yt is G × 1. Group current and lagged exogs, as well as lagged endogs in the vector
Xt , which is K × 1. Stack the errors of the G equations into the error vector Et. The model, with
additional assumtions, can be written as

Y ′t Γ = X ′tB + E ′t

Et ∼ N(0,Σ),∀t (10.1)
E(EtE

′
s) = 0, t 6= s

There are G equations here, and the parameters that enter into each equation are contained in the
columns of the matrices Γ and B. We can stack all n observations and write the model as

Y Γ = XB + E

E(X ′E) = 0(K×G)

vec(E) ∼ N(0,Ψ)



where

Y =



Y ′1
Y ′2
...
Y ′n


, X =



X ′1
X ′2
...
X ′n


, E =



E ′1
E ′2
...
E ′n


Y is n×G, X is n×K, and E is n×G.

• This system is complete, in that there are as many equations as endogs.

• There is a normality assumption. This isn’t necessary, but allows us to consider the relationship
between least squares and ML estimators.

• Since there is no autocorrelation of the Et ’s, and since the columns of E are individually
homoscedastic, then

Ψ =



σ11In σ12In · · · σ1GIn

σ22In
...

. . . ...
· σGGIn


= In ⊗ Σ

• X may contain lagged endogenous and exogenous variables. These variables are predetermined.

• We need to define what is meant by “endogenous” and “exogenous” when classifying the current
period variables. Remember the definition of weak exogeneity Assumption 15, the regressors are
weakly exogenous if E(Et|Xt) = 0. Endogenous regressors are those for which this assumption



does not hold. As long as there is no autocorrelation, lagged endogenous variables are weakly
exogenous.

10.2 Reduced form

Recall that the model is

Y ′t Γ = X ′tB + E ′t

V (Et) = Σ

This is the model in structural form.

Definition 23. [Structural form] An equation is in structural form when more than one current period
endogenous variable is included.

The solution for the current period endogs is easy to find. It is

Y ′t = X ′tBΓ−1 + E ′tΓ−1

= X ′tΠ + V ′t

Now only one current period endog appears in each equation. This is the reduced form.

Definition 24. [Reduced form] An equation is in reduced form if only one current period endog is
included.



An example is our supply/demand system. The reduced form for quantity is obtained by solving
the supply equation for price and substituting into demand:

qt = α1 + α2

(
qt − β1 − ε2t

β2

)
+ α3yt + ε1t

β2qt − α2qt = β2α1 − α2 (β1 + ε2t) + β2α3yt + β2ε1t

qt = β2α1 − α2β1

β2 − α2
+ β2α3yt
β2 − α2

+ β2ε1t − α2ε2t

β2 − α2
= π11 + π21yt + V1t

Similarly, the rf for price is

β1 + β2pt + ε2t = α1 + α2pt + α3yt + ε1t

β2pt − α2pt = α1 − β1 + α3yt + ε1t − ε2t

pt = α1 − β1

β2 − α2
+ α3yt
β2 − α2

+ ε1t − ε2t

β2 − α2
= π12 + π22yt + V2t

The interesting thing about the rf is that the equations individually satisfy the classical assumptions,
since yt is uncorrelated with ε1t and ε2t by assumption, and therefore E(ytVit) = 0, i=1,2, ∀t. The
errors of the rf are  V1t

V2t

 =
 β2ε1t−α2ε2t

β2−α2
ε1t−ε2t
β2−α2





The variance of V1t is

V (V1t) = E
[(
β2ε1t − α2ε2t

β2 − α2

) (
β2ε1t − α2ε2t

β2 − α2

)]

= β2
2σ11 − 2β2α2σ12 + α2σ22

(β2 − α2)2

• This is constant over time, so the first rf equation is homoscedastic.

• Likewise, since the εt are independent over time, so are the Vt.

The variance of the second rf error is

V (V2t) = E
[(
ε1t − ε2t

β2 − α2

) (
ε1t − ε2t

β2 − α2

)]

= σ11 − 2σ12 + σ22

(β2 − α2)2

and the contemporaneous covariance of the errors across equations is

E(V1tV2t) = E
[(
β2ε1t − α2ε2t

β2 − α2

) (
ε1t − ε2t

β2 − α2

)]

= β2σ11 − (β2 + α2)σ12 + σ22

(β2 − α2)2

• In summary the rf equations individually satisfy the classical assumptions, under the assumtions
we’ve made, but they are contemporaneously correlated.



The general form of the rf is

Y ′t = X ′tBΓ−1 + E ′tΓ−1

= X ′tΠ + V ′t

so we have that
Vt =

(
Γ−1)′Et ∼ N

(
0,
(
Γ−1)′ΣΓ−1

)
,∀t

and that the Vt are timewise independent (note that this wouldn’t be the case if the Et were autocor-
related).

From the reduced form, we can easily see that the endogenous variables are correlated with the
structural errors:

E(EtY
′
t ) = E

(
Et

(
X ′tBΓ−1 + E ′tΓ−1))

= E
(
EtX

′
tBΓ−1 + EtE

′
tΓ−1)

= ΣΓ−1 (10.2)

10.3 Estimation of the reduced form equations

From above, the RF equations are

Y ′t = X ′tBΓ−1 + E ′tΓ−1

= X ′tΠ + V ′t



and
Vt ∼ N (0,Ξ) ,∀t

where we define Ξ ≡ (Γ−1)′ΣΓ−1. The rf parameter estimator Π̂, is simply OLS applied to this model,
equation by equation::

Π̂ = (X ′X)−1X ′Y

which is simply
Π̂ = (X ′X)−1X ′

[
y1 y2 · · · yG

]
that is, OLS equation by equation using all the exogs in the estimation of each column of Π.

It may seem odd that we use OLS on the reduced form, since the rf equations are correlated,
because Ξ ≡ (Γ−1)′ΣΓ−1 is a full matrix. Why don’t we do GLS to improve efficiency of estimation of
the RF parameters?

OLS equation by equation to get the rf is equivalent to


y1

y2
...
yG


=



X 0 · · · 0
0 X

...
... . . . 0
0 · · · 0 X





π1

π2
...
πG


+



v1

v2
...
vG



where yi is the n× 1 vector of observations of the ith endog, X is the entire n×K matrix of exogs, πi
is the ith column of Π, and vi is the ith column of V. Use the notation

y = Xπ + v



to indicate the pooled model. Following this notation, the error covariance matrix is

V (v) = Ξ⊗ In

• This is a special case of a type of model known as a set of seemingly unrelated equations (SUR)
since the parameter vector of each equation is different. The important feature of this special
case is that the regressors are the same in each equation. The equations are contemporanously
correlated, because of the non-zero off diagonal elements in Ξ.

• Note that each equation of the system individually satisfies the classical assumptions.

• Normally when doing SUR, one simply does GLS on the whole system y = Xπ + v, where
V (v) = Ξ⊗ In, which is in general more efficient than OLS on each equation.

• However, when the regressors are the same in all equations, as is true in the present case of
estimation of the RF parameters, SUR ≡OLS. To show this note that in this case X = In ⊗X.
Using the rules

1. (A⊗B)−1 = (A−1 ⊗B−1)

2. (A⊗B)′ = (A′ ⊗B′) and



3. (A⊗B)(C ⊗D) = (AC ⊗BD), we get

π̂SUR =
(
(In ⊗X)′ (Ξ⊗ In)−1 (In ⊗X)

)−1 (In ⊗X)′ (Ξ⊗ In)−1 y

=
((

Ξ−1 ⊗X ′
)

(In ⊗X)
)−1 (Ξ−1 ⊗X ′

)
y

=
(
Ξ⊗ (X ′X)−1) (Ξ−1 ⊗X ′

)
y

=
[
IG ⊗ (X ′X)−1X ′

]
y

=



π̂1

π̂2
...
π̂G



• Note that this provides the answer to the exercise 8d in the chapter on GLS.

• So the unrestricted rf coefficients can be estimated efficiently (assuming normality) by OLS, even
if the equations are correlated.

• We have ignored any potential zeros in the matrix Π, which if they exist could potentially increase
the efficiency of estimation of the rf.

• Another example where SUR≡OLS is in estimation of vector autoregressions which is discussed
in Section 15.2.



10.4 Bias and inconsistency of OLS estimation of a structural
equation

Considering the first equation (this is without loss of generality, since we can always reorder the
equations) we can partition the Y matrix as

Y =
[
y Y1 Y2

]

• y is the first column

• Y1 are the other endogenous variables that enter the first equation

• Y2 are endogs that are excluded from this equation

Similarly, partition X as
X =

[
X1 X2

]

• X1 are the included exogs, and X2 are the excluded exogs.

Finally, partition the error matrix as
E =

[
ε E12

]
Assume that Γ has ones on the main diagonal. These are normalization restrictions that simply

scale the remaining coefficients on each equation, and which scale the variances of the error terms.



Given this scaling and our partitioning, the coefficient matrices can be written as

Γ =


1 Γ12

−γ1 Γ22

0 Γ32



B =
 β1 B12

0 B22


With this, the first equation can be written as

y = Y1γ1 +X1β1 + ε (10.3)
= Zδ + ε

The problem, as we’ve seen, is that the columns of Z corresponding to Y1 are correlated with ε,

because these are endogenous variables, and as we saw in equation 10.2, the endogenous variables are
correlated with the structural errors, so they don’t satisfy weak exogeneity. So, E(Z ′ε) 6=0. What are
the properties of the OLS estimator in this situation?

δ̂ = (Z ′Z)−1
Z ′y

= (Z ′Z)−1
Z ′

(
Zδ0 + ε

)
= δ0 + (Z ′Z)−1

Z ′ε



It’s clear that the OLS estimator is biased in general. Also,

δ̂ − δ0 =
Z ′Z
n

−1
Z ′ε

n

Say that lim Z ′ε
n = A,a.s., and lim Z ′Z

n = QZ , a.s. Then

lim
(
δ̂ − δ0

)
= Q−1

Z A 6= 0, a.s.

So the OLS estimator of a structural equation is inconsistent. In general, correlation between regressors
and errors leads to this problem, whether due to measurement error, simultaneity, or omitted regressors.

10.5 Note about the rest of this chaper

In class, I will not teach the material in the rest of this chapter at this time, but instead we will go
on to GMM. The material that follows is easier to understand in the context of GMM, where we get
a nice unified theory.

10.6 Identification by exclusion restrictions

The material in the rest of this chapter is no longer used in classes, but I’m leaving it in the notes for
reference.

The identification problem in simultaneous equations is in fact of the same nature as the identifica-
tion problem in any estimation setting: does the limiting objective function have the proper curvature



so that there is a unique global minimum or maximum at the true parameter value? In the context
of IV estimation, this is the case if the limiting covariance of the IV estimator is positive definite and
plim 1

nW
′ε = 0. This matrix is

V∞(β̂IV ) = (QXWQ
−1
WWQ

′
XW )−1σ2

• The necessary and sufficient condition for identification is simply that this matrix be positive
definite, and that the instruments be (asymptotically) uncorrelated with ε.

• For this matrix to be positive definite, we need that the conditions noted above hold: QWW must
be positive definite and QXW must be of full rank ( K ).

• These identification conditions are not that intuitive nor is it very obvious how to check them.

Necessary conditions

If we use IV estimation for a single equation of the system, the equation can be written as

y = Zδ + ε

where
Z =

[
Y1 X1

]
Notation:

• Let K be the total numer of weakly exogenous variables.



• Let K∗ = cols(X1) be the number of included exogs, and let K∗∗ = K −K∗ be the number of
excluded exogs (in this equation).

• Let G∗ = cols(Y1) + 1 be the total number of included endogs, and let G∗∗ = G − G∗ be the
number of excluded endogs.

Using this notation, consider the selection of instruments.

• Now the X1 are weakly exogenous and can serve as their own instruments.

• It turns out that X exhausts the set of possible instruments, in that if the variables in X don’t
lead to an identified model then no other instruments will identify the model either. Assuming
this is true (we’ll prove it in a moment), then a necessary condition for identification is that
cols(X2) ≥ cols(Y1) since if not then at least one instrument must be used twice, so W will not
have full column rank:

ρ(W ) < K∗ +G∗ − 1⇒ ρ(QZW ) < K∗ +G∗ − 1

This is the order condition for identification in a set of simultaneous equations. When the only
identifying information is exclusion restrictions on the variables that enter an equation, then
the number of excluded exogs must be greater than or equal to the number of included endogs,
minus 1 (the normalized lhs endog), e.g.,

K∗∗ ≥ G∗ − 1

• To show that this is in fact a necessary condition consider some arbitrary set of instruments W.



A necessary condition for identification is that

ρ

(
plim

1
n
W ′Z

)
= K∗ +G∗ − 1

where
Z =

[
Y1 X1

]
Recall that we’ve partitioned the model

Y Γ = XB + E

as
Y =

[
y Y1 Y2

]

X =
[
X1 X2

]
Given the reduced form

Y = XΠ + V

we can write the reduced form using the same partition

[
y Y1 Y2

]
=
[
X1 X2

]  π11 Π12 Π13

π21 Π22 Π23

 +
[
v V1 V2

]

so we have
Y1 = X1Π12 +X2Π22 + V1



so
1
n
W ′Z = 1

n
W ′

[
X1Π12 +X2Π22 + V1 X1

]
Because theW ’s are uncorrelated with the V1 ’s, by assumption, the cross betweenW and V1 converges
in probability to zero, so

plim
1
n
W ′Z = plim

1
n
W ′

[
X1Π12 +X2Π22 X1

]

Since the far rhs term is formed only of linear combinations of columns of X, the rank of this matrix
can never be greater than K, regardless of the choice of instruments. If Z has more than K columns,
then it is not of full column rank. When Z has more than K columns we have

G∗ − 1 +K∗ > K

or noting that K∗∗ = K −K∗,
G∗ − 1 > K∗∗

In this case, the limiting matrix is not of full column rank, and the identification condition fails.

Sufficient conditions

Identification essentially requires that the structural parameters be recoverable from the data. This
won’t be the case, in general, unless the structural model is subject to some restrictions. We’ve
already identified necessary conditions. Turning to sufficient conditions (again, we’re only considering
identification through zero restricitions on the parameters, for the moment).



The model is

Y ′t Γ = X ′tB + Et

V (Et) = Σ

This leads to the reduced form

Y ′t = X ′tBΓ−1 + EtΓ−1

= X ′tΠ + Vt

V (Vt) =
(
Γ−1)′ΣΓ−1

= Ω

The reduced form parameters are consistently estimable, but none of them are known a priori, and
there are no restrictions on their values. The problem is that more than one structural form has the
same reduced form, so knowledge of the reduced form parameters alone isn’t enough to determine the
structural parameters. To see this, consider the model

Y ′t ΓF = X ′tBF + EtF

V (EtF ) = F ′ΣF



where F is some arbirary nonsingular G×G matrix. The rf of this new model is

Y ′t = X ′tBF (ΓF )−1 + EtF (ΓF )−1

= X ′tBFF
−1Γ−1 + EtFF

−1Γ−1

= X ′tBΓ−1 + EtΓ−1

= X ′tΠ + Vt

Likewise, the covariance of the rf of the transformed model is

V (EtF (ΓF )−1) = V (EtΓ−1)
= Ω

Since the two structural forms lead to the same rf, and the rf is all that is directly estimable, the
models are said to be observationally equivalent. What we need for identification are restrictions on Γ
and B such that the only admissible F is an identity matrix (if all of the equations are to be identified).
Take the coefficient matrices as partitioned before:

 Γ
B

 =



1 Γ12

−γ1 Γ22

0 Γ32

β1 B12

0 B22


The coefficients of the first equation of the transformed model are simply these coefficients multiplied



by the first column of F . This gives

 Γ
B


 f11

F2

 =



1 Γ12

−γ1 Γ22

0 Γ32

β1 B12

0 B22



 f11

F2



For identification of the first equation we need that there be enough restrictions so that the only
admissible  f11

F2


be the leading column of an identity matrix, so that



1 Γ12

−γ1 Γ22

0 Γ32

β1 B12

0 B22



 f11

F2

 =



1
−γ1

0
β1

0



Note that the third and fifth rows are
 Γ32

B22

F2 =
 0

0





Supposing that the leading matrix is of full column rank, e.g.,

ρ


 Γ32

B22


 = cols


 Γ32

B22


 = G− 1

then the only way this can hold, without additional restrictions on the model’s parameters, is if F2 is
a vector of zeros. Given that F2 is a vector of zeros, then the first equation

[
1 Γ12

]  f11

F2

 = 1⇒ f11 = 1

Therefore, as long as

ρ


 Γ32

B22


 = G− 1

then  f11

F2

 =
 1

0G−1


The first equation is identified in this case, so the condition is sufficient for identification. It is also
necessary, since the condition implies that this submatrix must have at least G − 1 rows. Since this
matrix has

G∗∗ +K∗∗ = G−G∗ +K∗∗

rows, we obtain
G−G∗ +K∗∗ ≥ G− 1



or
K∗∗ ≥ G∗ − 1

which is the previously derived necessary condition.
The above result is fairly intuitive (draw picture here). The necessary condition ensures that there

are enough variables not in the equation of interest to potentially move the other equations, so as to
trace out the equation of interest. The sufficient condition ensures that those other equations in fact
do move around as the variables change their values. Some points:

• When an equation has K∗∗ = G∗ − 1, is is exactly identified, in that omission of an identifiying
restriction is not possible without loosing consistency.

• When K∗∗ > G∗ − 1, the equation is overidentified, since one could drop a restriction and
still retain consistency. Overidentifying restrictions are therefore testable. When an equation
is overidentified we have more instruments than are strictly necessary for consistent estimation.
Since estimation by IV with more instruments is more efficient asymptotically, one should employ
overidentifying restrictions if one is confident that they’re true.

• We can repeat this partition for each equation in the system, to see which equations are identified
and which aren’t.

• These results are valid assuming that the only identifying information comes from knowing
which variables appear in which equations, e.g., by exclusion restrictions, and through the use
of a normalization. There are other sorts of identifying information that can be used. These
include

1. Cross equation restrictions



2. Additional restrictions on parameters within equations (as in the Klein model discussed
below)

3. Restrictions on the covariance matrix of the errors

4. Nonlinearities in variables

• When these sorts of information are available, the above conditions aren’t necessary for identi-
fication, though they are of course still sufficient.

To give an example of how other information can be used, consider the model

Y Γ = XB + E

where Γ is an upper triangular matrix with 1’s on the main diagonal. This is a triangular system of
equations. In this case, the first equation is

y1 = XB·1 + E·1

Since only exogs appear on the rhs, this equation is identified.
The second equation is

y2 = −γ21y1 +XB·2 + E·2

This equation hasK∗∗ = 0 excluded exogs, and G∗ = 2 included endogs, so it fails the order (necessary)
condition for identification.

• However, suppose that we have the restriction Σ21 = 0, so that the first and second structural



errors are uncorrelated. In this case

E(y1tε2t) = E {(X ′tB·1 + ε1t)ε2t} = 0

so there’s no problem of simultaneity. If the entire Σ matrix is diagonal, then following the same
logic, all of the equations are identified. This is known as a fully recursive model.

10.7 2SLS

When we have no information regarding cross-equation restrictions or the structure of the error co-
variance matrix, one can estimate the parameters of a single equation of the system without regard to
the other equations.

• This isn’t always efficient, as we’ll see, but it has the advantage that misspecifications in other
equations will not affect the consistency of the estimator of the parameters of the equation of
interest.

• Also, estimation of the equation won’t be affected by identification problems in other equations.

The 2SLS estimator is very simple: it is the GIV estimator, using all of the weakly exogenous variables
as instruments. In the first stage, each column of Y1 is regressed on all the weakly exogenous variables
in the system, e.g., the entire X matrix. The fitted values are

Ŷ1 = X(X ′X)−1X ′Y1

= PXY1

= XΠ̂1



Since these fitted values are the projection of Y1 on the space spanned by X, and since any vector
in this space is uncorrelated with ε by assumption, Ŷ1 is uncorrelated with ε. Since Ŷ1 is simply the
reduced-form prediction, it is correlated with Y1, The only other requirement is that the instruments
be linearly independent. This should be the case when the order condition is satisfied, since there are
more columns in X2 than in Y1 in this case.

The second stage substitutes Ŷ1 in place of Y1, and estimates by OLS. This original model is

y = Y1γ1 +X1β1 + ε

= Zδ + ε

and the second stage model is
y = Ŷ1γ1 +X1β1 + ε.

Since X1 is in the space spanned by X, PXX1 = X1, so we can write the second stage model as

y = PXY1γ1 + PXX1β1 + ε

≡ PXZδ + ε

The OLS estimator applied to this model is

δ̂ = (Z ′PXZ)−1Z ′PXy



which is exactly what we get if we estimate using IV, with the reduced form predictions of the endogs
used as instruments. Note that if we define

Ẑ = PXZ

=
[
Ŷ1 X1

]

so that Ẑ are the instruments for Z, then we can write

δ̂ = (Ẑ ′Z)−1Ẑ ′y

• Important note: OLS on the transformed model can be used to calculate the 2SLS estimate of
δ, since we see that it’s equivalent to IV using a particular set of instruments. However the OLS
covariance formula is not valid. We need to apply the IV covariance formula already seen above.

Actually, there is also a simplification of the general IV variance formula. Define

Ẑ = PXZ

=
[
Ŷ X

]

The IV covariance estimator would ordinarily be

V̂ (δ̂) =
(
Z ′Ẑ

)−1 (
Ẑ ′Ẑ

) (
Ẑ ′Z

)−1
σ̂2
IV



However, looking at the last term in brackets

Ẑ ′Z =
[
Ŷ1 X1

]′ [
Y1 X1

]
=
 Y ′1(PX)Y1 Y ′1(PX)X1

X ′1Y1 X ′1X1


but since PX is idempotent and since PXX = X, we can write

[
Ŷ1 X1

]′ [
Y1 X1

]
=

 Y ′1PXPXY1 Y ′1PXX1

X ′1PXY1 X ′1X1


=

[
Ŷ1 X1

]′ [
Ŷ1 X1

]
= Ẑ ′Ẑ

Therefore, the second and last term in the variance formula cancel, so the 2SLS varcov estimator
simplifies to

V̂ (δ̂) =
(
Z ′Ẑ

)−1
σ̂2
IV

which, following some algebra similar to the above, can also be written as

V̂ (δ̂) =
(
Ẑ ′Ẑ

)−1
σ̂2
IV (10.4)

Finally, recall that though this is presented in terms of the first equation, it is general since any
equation can be placed first.

Properties of 2SLS:

1. Consistent

2. Asymptotically normal



3. Biased when the mean esists (the existence of moments is a technical issue we won’t go into
here).

4. Asymptotically inefficient, except in special circumstances (more on this later).

10.8 Testing the overidentifying restrictions

The selection of which variables are endogs and which are exogs is part of the specification of the
model. As such, there is room for error here: one might erroneously classify a variable as exog when
it is in fact correlated with the error term. A general test for the specification on the model can be
formulated as follows:

The IV estimator can be calculated by applying OLS to the transformed model, so the IV objective
function at the minimized value is

s(β̂IV ) =
(
y −Xβ̂IV

)′
PW

(
y −Xβ̂IV

)
,

but

ε̂IV = y −Xβ̂IV
= y −X(X ′PWX)−1X ′PWy

=
(
I −X(X ′PWX)−1X ′PW

)
y

=
(
I −X(X ′PWX)−1X ′PW

)
(Xβ + ε)

= A (Xβ + ε)



where
A ≡ I −X(X ′PWX)−1X ′PW

so
s(β̂IV ) = (ε′ + β′X ′)A′PWA (Xβ + ε)

Moreover, A′PWA is idempotent, as can be verified by multiplication:

A′PWA =
(
I − PWX(X ′PWX)−1X ′

)
PW

(
I −X(X ′PWX)−1X ′PW

)
=

(
PW − PWX(X ′PWX)−1X ′PW

) (
PW − PWX(X ′PWX)−1X ′PW

)
=

(
I − PWX(X ′PWX)−1X ′

)
PW .

Furthermore, A is orthogonal to X

AX =
(
I −X(X ′PWX)−1X ′PW

)
X

= X −X
= 0

so
s(β̂IV ) = ε′A′PWAε

Supposing the ε are normally distributed, with variance σ2, then the random variable

s(β̂IV )
σ2 = ε′A′PWAε

σ2



is a quadratic form of a N(0, 1) random variable with an idempotent matrix in the middle, so

s(β̂IV )
σ2 ∼ χ2(ρ(A′PWA))

This isn’t available, since we need to estimate σ2. Substituting a consistent estimator,

s(β̂IV )
σ̂2

a∼ χ2(ρ(A′PWA))

• Even if the ε aren’t normally distributed, the asymptotic result still holds. The last thing we
need to determine is the rank of the idempotent matrix. We have

A′PWA =
(
PW − PWX(X ′PWX)−1X ′PW

)

so

ρ(A′PWA) = Tr
(
PW − PWX(X ′PWX)−1X ′PW

)
= TrPW − TrX ′PWPWX(X ′PWX)−1

= TrW (W ′W )−1W ′ −KX

= TrW ′W (W ′W )−1 −KX

= KW −KX

where KW is the number of columns of W and KX is the number of columns of X. The de-
grees of freedom of the test is simply the number of overidentifying restrictions: the number of
instruments we have beyond the number that is strictly necessary for consistent estimation.



• This test is an overall specification test: the joint null hypothesis is that the model is correctly
specified and that theW form valid instruments (e.g., that the variables classified as exogs really
are uncorrelated with ε. Rejection can mean that either the model y = Zδ + ε is misspecified,
or that there is correlation between X and ε.

• This is a particular case of the GMM criterion test, which is covered in the second half of the
course. See Section 14.8.

• Note that since
ε̂IV = Aε

and
s(β̂IV ) = ε′A′PWAε

we can write

s(β̂IV )
σ̂2

= (ε̂′W (W ′W )−1W ′) (W (W ′W )−1W ′ε̂)
ε̂′ε̂/n

= n(RSSε̂IV |W/TSSε̂IV )
= nR2

u

where R2
u is the uncentered R2 from a regression of the IV residuals on all of the instruments

W . This is a convenient way to calculate the test statistic.

On an aside, consider IV estimation of a just-identified model, using the standard notation

y = Xβ + ε



and W is the matrix of instruments. If we have exact identification then cols(W ) = cols(X), so W ′
X

is a square matrix. The transformed model is

PWy = PWXβ + PWε

and the fonc are
X ′PW (y −Xβ̂IV ) = 0

The IV estimator is
β̂IV = (X ′PWX)−1

X ′PWy

Considering the inverse here

(X ′PWX)−1 =
(
X ′W (W ′W )−1W ′X

)−1

= (W ′X)−1 (X ′W (W ′W )−1)−1

= (W ′X)−1(W ′W ) (X ′W )−1

Now multiplying this by X ′PWy, we obtain

β̂IV = (W ′X)−1(W ′W ) (X ′W )−1
X ′PWy

= (W ′X)−1(W ′W ) (X ′W )−1
X ′W (W ′W )−1W ′y

= (W ′X)−1W ′y



The objective function for the generalized IV estimator is

s(β̂IV ) =
(
y −Xβ̂IV

)′
PW

(
y −Xβ̂IV

)
= y′PW

(
y −Xβ̂IV

)
− β̂′IVX ′PW

(
y −Xβ̂IV

)
= y′PW

(
y −Xβ̂IV

)
− β̂′IVX ′PWy + β̂′IVX

′PWXβ̂IV

= y′PW
(
y −Xβ̂IV

)
− β̂′IV

(
X ′PWy +X ′PWXβ̂IV

)
= y′PW

(
y −Xβ̂IV

)

by the fonc for generalized IV. However, when we’re in the just indentified case, this is

s(β̂IV ) = y′PW
(
y −X(W ′X)−1W ′y

)
= y′PW

(
I −X(W ′X)−1W ′) y

= y′
(
W (W ′W )−1W ′ −W (W ′W )−1W ′X(W ′X)−1W ′) y

= 0

The value of the objective function of the IV estimator is zero in the just identified case. This makes
sense, since we’ve already shown that the objective function after dividing by σ2 is asymptotically
χ2 with degrees of freedom equal to the number of overidentifying restrictions. In the present case,
there are no overidentifying restrictions, so we have a χ2(0) rv, which has mean 0 and variance 0,
e.g., it’s simply 0. This means we’re not able to test the identifying restrictions in the case of exact
identification.



10.9 System methods of estimation

2SLS is a single equation method of estimation, as noted above. The advantage of a single equation
method is that it’s unaffected by the other equations of the system, so they don’t need to be specified
(except for defining what are the exogs, so 2SLS can use the complete set of instruments). The
disadvantage of 2SLS is that it’s inefficient, in general.

• Recall that overidentification improves efficiency of estimation, since an overidentified equation
can use more instruments than are necessary for consistent estimation.

• Secondly, the assumption is that

Y Γ = XB + E

E(X ′E) = 0(K×G)

vec(E) ∼ N(0,Ψ)

• Since there is no autocorrelation of the Et ’s, and since the columns of E are individually
homoscedastic, then

Ψ =



σ11In σ12In · · · σ1GIn

σ22In
...

. . . ...
· σGGIn


= Σ⊗ In



This means that the structural equations are heteroscedastic and correlated with one another

• In general, ignoring this will lead to inefficient estimation, following the section on GLS. When
equations are correlated with one another estimation should account for the correlation in order
to obtain efficiency.

• Also, since the equations are correlated, information about one equation is implicitly information
about all equations. Therefore, overidentification restrictions in any equation improve efficiency
for all equations, even the just identified equations.

• Single equation methods can’t use these types of information, and are therefore inefficient (in
general).

3SLS

Note: It is easier and more practical to treat the 3SLS estimator as a generalized method of moments
estimator (see Chapter 14). I no longer teach the following section, but it is retained for its possible
historical interest. Another alternative is to use FIML (Subsection 10.9), if you are willing to make
distributional assumptions on the errors. This is computationally feasible with modern computers.

Following our above notation, each structural equation can be written as

yi = Yiγ1 +Xiβ1 + εi

= Ziδi + εi



Grouping the G equations together we get


y1

y2
...
yG


=



Z1 0 · · · 0
0 Z2

...
... . . . 0
0 · · · 0 ZG





δ1

δ2
...
δG


+



ε1

ε2
...
εG


or

y = Zδ + ε

where we already have that

E(εε′) = Ψ
= Σ⊗ In

The 3SLS estimator is just 2SLS combined with a GLS correction that takes advantage of the structure



of Ψ. Define Ẑ as

Ẑ =



X(X ′X)−1X ′Z1 0 · · · 0
0 X(X ′X)−1X ′Z2

...
... . . . 0
0 · · · 0 X(X ′X)−1X ′ZG



=



Ŷ1 X1 0 · · · 0
0 Ŷ2 X2

...
... . . . 0
0 · · · 0 ŶG XG



These instruments are simply the unrestricted rf predicitions of the endogs, combined with the
exogs. The distinction is that if the model is overidentified, then

Π = BΓ−1

may be subject to some zero restrictions, depending on the restrictions on Γ and B, and Π̂ does not
impose these restrictions. Also, note that Π̂ is calculated using OLS equation by equation, as was
discussed in Section 10.3.

The 2SLS estimator would be
δ̂ = (Ẑ ′Z)−1Ẑ ′y

as can be verified by simple multiplication, and noting that the inverse of a block-diagonal matrix is
just the matrix with the inverses of the blocks on the main diagonal. This IV estimator still ignores the
covariance information. The natural extension is to add the GLS transformation, putting the inverse



of the error covariance into the formula, which gives the 3SLS estimator

δ̂3SLS =
(
Ẑ ′ (Σ⊗ In)−1 Z

)−1
Ẑ ′ (Σ⊗ In)−1 y

=
(
Ẑ ′

(
Σ−1 ⊗ In

)
Z
)−1

Ẑ ′
(
Σ−1 ⊗ In

)
y

This estimator requires knowledge of Σ. The solution is to define a feasible estimator using a consistent
estimator of Σ. The obvious solution is to use an estimator based on the 2SLS residuals:

ε̂i = yi − Ziδ̂i,2SLS

(IMPORTANT NOTE: this is calculated using Zi, not Ẑi). Then the element i, j of Σ is estimated
by

σ̂ij = ε̂′iε̂j
n

Substitute Σ̂ into the formula above to get the feasible 3SLS estimator.
Analogously to what we did in the case of 2SLS, the asymptotic distribution of the 3SLS estimator

can be shown to be

√
n
(
δ̂3SLS − δ

)
a∼ N

0, lim
n→∞ E


Ẑ ′ (Σ⊗ In)−1 Ẑ

n

−1


A formula for estimating the variance of the 3SLS estimator in finite samples (cancelling out the powers
of n) is

V̂
(
δ̂3SLS

)
=
(
Ẑ ′

(
Σ̂−1 ⊗ In

)
Ẑ
)−1



• This is analogous to the 2SLS formula in equation (10.4), combined with the GLS correction.

• In the case that all equations are just identified, 3SLS is numerically equivalent to 2SLS. Proving
this is easiest if we use a GMM interpretation of 2SLS and 3SLS. GMM is presented in the next
econometrics course. For now, take it on faith.

FIML

Full information maximum likelihood is an alternative estimation method. FIML will be asymptotically
efficient, since ML estimators based on a given information set are asymptotically efficient w.r.t.
all other estimators that use the same information set, and in the case of the full-information ML
estimator we use the entire information set. The 2SLS and 3SLS estimators don’t require distributional
assumptions, while FIML of course does. Our model is, recall

Y ′t Γ = X ′tB + E ′t

Et ∼ N(0,Σ),∀t
E(EtE

′
s) = 0, t 6= s

The joint normality of Et means that the density for Et is the multivariate normal, which is

(2π)−g/2
(
det Σ−1)−1/2 exp

(
−1

2E
′
tΣ−1Et

)



The transformation from Et to Yt requires the Jacobian

| det dEt

dY ′t
| = | det Γ|

so the density for Yt is

(2π)−G/2| det Γ|
(
det Σ−1)−1/2 exp

(
−1

2 (Y ′t Γ−X ′tB) Σ−1 (Y ′t Γ−X ′tB)′
)

Given the assumption of independence over time, the joint log-likelihood function is

lnL(B,Γ,Σ) = −nG2 ln(2π) + n ln(| det Γ|)− n

2 ln det Σ−1 − 1
2

n∑
t=1

(Y ′t Γ−X ′tB) Σ−1 (Y ′t Γ−X ′tB)′

• This is a nonlinear in the parameters objective function. Maximixation of this can be done using
iterative numeric methods. We’ll see how to do this in the next section.

• It turns out that the asymptotic distribution of 3SLS and FIML are the same, assuming normality
of the errors.

• One can calculate the FIML estimator by iterating the 3SLS estimator, thus avoiding the use of
a nonlinear optimizer. The steps are

1. Calculate Γ̂3SLS and B̂3SLS as normal.

2. Calculate Π̂ = B̂3SLSΓ̂−1
3SLS. This is new, we didn’t estimate Π in this way before. This

estimator may have some zeros in it. When Greene says iterated 3SLS doesn’t lead to
FIML, he means this for a procedure that doesn’t update Π̂, but only updates Σ̂ and B̂



and Γ̂. If you update Π̂ you do converge to FIML.

3. Calculate the instruments Ŷ = XΠ̂ and calculate Σ̂ using Γ̂ and B̂ to get the estimated
errors, applying the usual estimator.

4. Apply 3SLS using these new instruments and the estimate of Σ.

5. Repeat steps 2-4 until there is no change in the parameters.

• FIML is fully efficient, since it’s an ML estimator that uses all information. This implies that
3SLS is fully efficient when the errors are normally distributed. Also, if each equation is just iden-
tified and the errors are normal, then 2SLS will be fully efficient, since in this case 2SLS≡3SLS.

• When the errors aren’t normally distributed, the likelihood function is of course different than
what’s written above.



10.10 Example: Klein’s Model 1

To give a practical example, consider the following (old-fashioned, but illustrative) macro model (this
is the widely known Klein’s Model 1)

Consumption: Ct = α0 + α1Pt + α2Pt−1 + α3(W p
t +W g

t ) + ε1t

Investment: It = β0 + β1Pt + β2Pt−1 + β3Kt−1 + ε2t

Private Wages: W p
t = γ0 + γ1Xt + γ2Xt−1 + γ3At + ε3t

Output: Xt = Ct + It +Gt

Profits: Pt = Xt − Tt −W p
t

Capital Stock: Kt = Kt−1 + It
ε1t

ε2t

ε3t

 ∼ IID




0
0
0

 ,

σ11 σ12 σ13

σ22 σ23

σ33




The other variables are the government wage bill,W g
t , taxes, Tt, government nonwage spending, Gt,and

a time trend, At. The endogenous variables are the lhs variables,

Y ′t =
[
Ct It W p

t Xt Pt Kt

]

and the predetermined variables are all others:

X ′t =
[

1 W g
t Gt Tt At Pt−1 Kt−1 Xt−1

]
.



The model assumes that the errors of the equations are contemporaneously correlated, but nonauto-
correlated. The model written as Y Γ = XB + E gives

Γ =



1 0 0 −1 0 0
0 1 0 −1 0 −1
−α3 0 1 0 1 0
0 0 −γ1 1 −1 0
−α1 −β1 0 0 1 0
0 0 0 0 0 1



B =



α0 β0 γ0 0 0 0
α3 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 γ3 0 0 0
α2 β2 0 0 0 0
0 β3 0 0 0 1
0 0 γ2 0 0 0


To check this identification of the consumption equation, we need to extract Γ32 and B22, the subma-
trices of coefficients of endogs and exogs that don’t appear in this equation. These are the rows that



have zeros in the first column, and we need to drop the first column. We get

 Γ32

B22

 =



1 0 −1 0 −1
0 −γ1 1 −1 0
0 0 0 0 1
0 0 1 0 0
0 0 0 −1 0
0 γ3 0 0 0
β3 0 0 0 1
0 γ2 0 0 0



We need to find a set of 5 rows of this matrix gives a full-rank 5×5 matrix. For example, selecting
rows 3,4,5,6, and 7 we obtain the matrix

A =



0 0 0 0 1
0 0 1 0 0
0 0 0 −1 0
0 γ3 0 0 0
β3 0 0 0 1





This matrix is of full rank, so the sufficient condition for identification is met. Counting included
endogs, G∗ = 3, and counting excluded exogs, K∗∗ = 5, so

K∗∗ − L = G∗ − 1
5− L = 3− 1

L = 3

• The equation is over-identified by three restrictions, according to the counting rules, which are
correct when the only identifying information are the exclusion restrictions. However, there is
additional information in this case. Both W p

t and W g
t enter the consumption equation, and their

coefficients are restricted to be the same. For this reason the consumption equation is in fact
overidentified by four restrictions.

The Octave program Simeq/Klein2SLS.m performs 2SLS estimation for the 3 equations of Klein’s
model 1, assuming nonautocorrelated errors, so that lagged endogenous variables can be used as
instruments. The results are:

CONSUMPTION EQUATION

*******************************************************
2SLS estimation results
Observations 21
R-squared 0.976711
Sigma-squared 1.044059

http://pareto.uab.es/mcreel/Econometrics/Examples/Simeq/Klein2SLS.m


estimate st.err. t-stat. p-value
Constant 16.555 1.321 12.534 0.000
Profits 0.017 0.118 0.147 0.885
Lagged Profits 0.216 0.107 2.016 0.060
Wages 0.810 0.040 20.129 0.000

*******************************************************
INVESTMENT EQUATION

*******************************************************
2SLS estimation results
Observations 21
R-squared 0.884884
Sigma-squared 1.383184

estimate st.err. t-stat. p-value
Constant 20.278 7.543 2.688 0.016
Profits 0.150 0.173 0.867 0.398
Lagged Profits 0.616 0.163 3.784 0.001
Lagged Capital -0.158 0.036 -4.368 0.000

*******************************************************
WAGES EQUATION



*******************************************************
2SLS estimation results
Observations 21
R-squared 0.987414
Sigma-squared 0.476427

estimate st.err. t-stat. p-value
Constant 1.500 1.148 1.307 0.209
Output 0.439 0.036 12.316 0.000
Lagged Output 0.147 0.039 3.777 0.002
Trend 0.130 0.029 4.475 0.000

*******************************************************

The above results are not valid (specifically, they are inconsistent) if the errors are autocorrelated,
since lagged endogenous variables will not be valid instruments in that case. You might consider
eliminating the lagged endogenous variables as instruments, and re-estimating by 2SLS, to obtain
consistent parameter estimates in this more complex case. Standard errors will still be estimated
inconsistently, unless use a Newey-West type covariance estimator. Food for thought...



Chapter 11

Numeric optimization methods

Readings: Hamilton, ch. 5, section 7 (pp. 133-139)∗; Gourieroux and Monfort, Vol. 1, ch. 13, pp.
443-60∗; Goffe, et. al. (1994).

The next chapter introduces extremum estimators, which are minimizers or maximizers of objective
functions. If we’re going to be applying extremum estimators, we’ll need to know how to find an
extremum. This section gives a very brief introduction to what is a large literature on numeric
optimization methods. We’ll consider a few well-known techniques, and one fairly new technique that
may allow one to solve difficult problems. The main objective is to become familiar with the issues,
and to learn how to use the BFGS algorithm at the practical level.

The general problem we consider is how to find the maximizing element θ̂ (a K -vector) of a
function s(θ). This function may not be continuous, and it may not be differentiable. Even if it
is twice continuously differentiable, it may not be globally concave, so local maxima, minima and
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saddlepoints may all exist. Supposing s(θ) were a quadratic function of θ, e.g.,

s(θ) = a+ b′θ + 1
2θ
′Cθ,

the first order conditions would be linear:

Dθs(θ) = b+ Cθ

so the maximizing (minimizing) element would be θ̂ = −C−1b. This is the sort of problem we have with
linear models estimated by OLS. It’s also the case for feasible GLS, since conditional on the estimate
of the varcov matrix, we have a quadratic objective function in the remaining parameters.

More general problems will not have linear f.o.c., and we will not be able to solve for the maximizer
analytically. This is when we need a numeric optimization method.

11.1 Search

The idea is to create a grid over the parameter space and evaluate the function at each point on the
grid. Select the best point. Then refine the grid in the neighborhood of the best point, and continue
until the accuracy is ”good enough”. See Figure 11.1. One has to be careful that the grid is fine enough
in relationship to the irregularity of the function to ensure that sharp peaks are not missed entirely.

To check q values in each dimension of a K dimensional parameter space, we need to check qK

points. For example, if q = 100 and K = 10, there would be 10010 points to check. If 1000 points
can be checked in a second, it would take 3. 171 × 109 years to perform the calculations, which is
approximately 2/3 the age of the earth. The search method is a very reasonable choice if K is small,



Figure 11.1: Search method



but it quickly becomes infeasible if K is moderate or large.

11.2 Derivative-based methods

Introduction

Derivative-based methods are defined by

1. the method for choosing the initial value, θ1

2. the iteration method for choosing θk+1 given θk (based upon derivatives)

3. the stopping criterion.

The iteration method can be broken into two problems: choosing the stepsize ak (a scalar) and choosing
the direction of movement, dk, which is of the same dimension of θ, so that

θ(k+1) = θ(k) + akdk.

A locally increasing direction of search d is a direction such that

∂s(θ + ad)
∂a

> 0

for a positive but small. That is, if we go in direction d, we will improve on the objective function, at
least if we don’t go too far in that direction.



• As long as the gradient at θ is not zero there exist increasing directions, and they can all be
represented as Qkg(θk) where Qk is a symmetric pd matrix and g (θ) = Dθs(θ) is the gradient at
θ. To see this, take a T.S. expansion around a0 = 0

s(θ + ad) = s(θ + 0d) + (a− 0) g(θ + 0d)′d+ o(1)
= s(θ) + ag(θ)′d+ o(1)

For small enough a the o(1) term can be ignored. If d is to be an increasing direction, we need
g(θ)′d > 0. Defining d = Qg(θ), where Q is positive definite, we guarantee that

g(θ)′d = g(θ)′Qg(θ) > 0

unless g(θ) = 0. Every increasing direction can be represented in this way (p.d. matrices are
those such that the angle between g and Qg(θ) is less that 90 degrees). See Figure 11.2.

• With this, the iteration rule becomes

θ(k+1) = θ(k) + akQkg(θk)

and we keep going until the gradient becomes zero, so that there is no increasing direction. The
problem is how to choose a and Q.

• Conditional on Q, choosing a is fairly straightforward. A simple line search is an attractive
possibility, since a is a scalar.

• The remaining problem is how to choose Q.



Figure 11.2: Increasing directions of search



• Note also that this gives no guarantees to find a global maximum.

Steepest descent

Steepest descent (ascent if we’re maximizing) just sets Q to and identity matrix, since the gradient
provides the direction of maximum rate of change of the objective function.

• Advantages: fast - doesn’t require anything more than first derivatives.

• Disadvantages: This doesn’t always work too well however: see the Rosenbrock, or ”banana”
function: http://en.wikipedia.org/wiki/Rosenbrock_function.

Newton’ s method

Newton’s method uses information about the slope and curvature of the objective function to determine
which direction and how far to move from an initial point. Supposing we’re trying to maximize sn(θ).
Take a second order Taylor’s series approximation of sn(θ) about θk (an initial guess).

sn(θ) ≈ sn(θk) + g(θk)′
(
θ − θk

)
+ 1/2

(
θ − θk

)′
H(θk)

(
θ − θk

)

To attempt to maximize sn(θ), we can maximize the portion of the right-hand side that depends on
θ, i.e., we can maximize

s̃(θ) = g(θk)′θ + 1/2
(
θ − θk

)′
H(θk)

(
θ − θk

)
with respect to θ. This is a much easier problem, since it is a quadratic function in θ, so it has linear
first order conditions. These are

http://en.wikipedia.org/wiki/Rosenbrock_function


Dθs̃(θ) = g(θk) +H(θk)
(
θ − θk

)
So the solution for the next round estimate is

θk+1 = θk −H(θk)−1g(θk)

See http://en.wikipedia.org/wiki/Newton%27s_method_in_optimization for more information.
This is illustrated in Figure 11.3.

However, it’s good to include a stepsize, since the approximation to sn(θ) may be bad far away
from the maximizer θ̂, so the actual iteration formula is

θk+1 = θk − akH(θk)−1g(θk)

• A potential problem is that the Hessian may not be negative definite when we’re far from the
maximizing point. So −H(θk)−1 may not be positive definite, and −H(θk)−1g(θk) may not
define an increasing direction of search. This can happen when the objective function has flat
regions, in which case the Hessian matrix is very ill-conditioned (e.g., is nearly singular), or
when we’re in the vicinity of a local minimum, H(θk) is positive definite, and our direction
is a decreasing direction of search. Matrix inverses by computers are subject to large errors
when the matrix is ill-conditioned. Also, we certainly don’t want to go in the direction of a
minimum when we’re maximizing. To solve this problem, Quasi-Newton methods simply add
a positive definite component to H(θ) to ensure that the resulting matrix is positive definite,
e.g., Q = −H(θ) + bI, where b is chosen large enough so that Q is well-conditioned and positive
definite. This has the benefit that improvement in the objective function is guaranteed. See

http://en.wikipedia.org/wiki/Newton%27s_method_in_optimization


Figure 11.3: Newton iteration



http://en.wikipedia.org/wiki/Quasi-Newton_method.

• Another variation of quasi-Newton methods is to approximate the Hessian by using successive
gradient evaluations. This avoids actual calculation of the Hessian, which is an order of mag-
nitude (in the dimension of the parameter vector) more costly than calculation of the gradient.
They can be done to ensure that the approximation is p.d. DFP and BFGS are two well-known
examples.

• show bfgsmin_example.m to optimize Rosenbrock function

Stopping criteria
The last thing we need is to decide when to stop. A digital computer is subject to limited machine

precision and round-off errors. For these reasons, it is unreasonable to hope that a program can
exactly find the point that maximizes a function. We need to define acceptable tolerances. Some
stopping criteria are:

• Negligable change in parameters:
|θkj − θk−1

j | < ε1,∀j

• Negligable relative change:

|
θkj − θk−1

j

θk−1
j

| < ε2,∀j

• Negligable change of function:
|s(θk)− s(θk−1)| < ε3

http://en.wikipedia.org/wiki/Quasi-Newton_method


• Gradient negligibly different from zero:

|gj(θk)| < ε4,∀j

• Or, even better, check all of these.

• Also, if we’re maximizing, it’s good to check that the last round (real, not approximate) Hessian
is negative definite.

Starting values
The Newton-Raphson and related algorithms work well if the objective function is concave (when

maximizing), but not so well if there are convex regions and local minima or multiple local maxima.
The algorithm may converge to a local minimum or to a local maximum that is not optimal. The
algorithm may also have difficulties converging at all.

• The usual way to “ensure” that a global maximum has been found is to use many different
starting values, and choose the solution that returns the highest objective function value. THIS
IS IMPORTANT in practice. More on this later.

Calculating derivatives
The Newton-Raphson algorithm requires first and second derivatives. It is often difficult to calculate

derivatives (especially the Hessian) analytically if the function sn(·) is complicated. Possible solutions
are to calculate derivatives numerically, or to use programs such as MuPAD or Mathematica to cal-
culate analytic derivatives. For example, Figure 11.4 shows Sage 1 calculating a couple of derivatives.

1Sage is free software that has both symbolic and numeric computational capabilities. See http://www.sagemath.org/

http://www.sagemath.org/


The KAIST Sage cell server will let you try Sage online, its address is http://aleph.sagemath.org/.

• Numeric derivatives are less accurate than analytic derivatives, and are usually more costly to
evaluate. Both factors usually cause optimization programs to be less successful when numeric
derivatives are used.

• One advantage of numeric derivatives is that you don’t have to worry about having made an
error in calculating the analytic derivative. When programming analytic derivatives it’s a good
idea to check that they are correct by using numeric derivatives. This is a lesson I learned the
hard way when writing my thesis.

• Numeric second derivatives are much more accurate if the data are scaled so that the elements of
the gradient are of the same order of magnitude. Example: if the model is yt = h(αxt+βzt)+εt,

and estimation is by NLS, suppose that Dαsn(·) = 1000 and Dβsn(·) = 0.001. One could define
α∗ = α/1000; x∗t = 1000xt;β∗ = 1000β; z∗t = zt/1000. In this case, the gradients Dα∗sn(·) and
Dβsn(·) will both be 1.

In general, estimation programs always work better if data is scaled in this way, since roundoff
errors are less likely to become important. This is important in practice.

• There are algorithms (such as BFGS and DFP) that use the sequential gradient evaluations to
build up an approximation to the Hessian. The iterations are faster because the actual Hessian
isn’t calculated, but more iterations usually are required for convergence. Versions of BFGS are
probably the most widely used optimizers in econometrics.

• Switching between algorithms during iterations is sometimes useful.

http://aleph.sagemath.org/


Figure 11.4: Using Sage to get analytic derivatives



11.3 Simulated Annealing

Simulated annealing is an algorithm which can find an optimum in the presence of nonconcavities,
discontinuities and multiple local minima/maxima. Basically, the algorithm randomly selects evalua-
tion points, accepts all points that yield an increase in the objective function, but also accepts some
points that decrease the objective function. This allows the algorithm to escape from local minima.
As more and more points are tried, periodically the algorithm focuses on the best point so far, and
reduces the range over which random points are generated. Also, the probability that a negative move
is accepted reduces. The algorithm relies on many evaluations, as in the search method, but focuses
in on promising areas, which reduces function evaluations with respect to the search method. It does
not require derivatives to be evaluated. I have a program to do this if you’re interested.

11.4 A practical example: Maximum likelihood estimation
using count data: The MEPS data and the Poisson
model

To show optimazation methods in practice, using real economic data, this section presents maximum
likelihood estimation results for a particular model using real data. The focus at present is simply on
numeric optimization. Later, after studying maximum likelihood estimation, this section can be read
again.

Demand for health care is usually thought of a a derived demand: health care is an input to a home
production function that produces health, and health is an argument of the utility function. Grossman
(1972), for example, models health as a capital stock that is subject to depreciation (e.g., the effects



of ageing). Health care visits restore the stock. Under the home production framework, individuals
decide when to make health care visits to maintain their health stock, or to deal with negative shocks
to the stock in the form of accidents or illnesses. As such, individual demand will be a function of the
parameters of the individuals’ utility functions.

The MEPS health data file , meps1996.data, contains 4564 observations on six measures of health
care usage. The data is from the 1996 Medical Expenditure Panel Survey (MEPS). You can get
more information at http://www.meps.ahrq.gov/. The six measures of use are are office-based
visits (OBDV), outpatient visits (OPV), inpatient visits (IPV), emergency room visits (ERV), den-
tal visits (VDV), and number of prescription drugs taken (PRESCR). These form columns 1 - 6 of
meps1996.data. The conditioning variables are public insurance (PUBLIC), private insurance (PRIV),
sex (SEX), age (AGE), years of education (EDUC), and income (INCOME). These form columns 7 -
12 of the file, in the order given here. PRIV and PUBLIC are 0/1 binary variables, where a 1 indicates
that the person has access to public or private insurance coverage. SEX is also 0/1, where 1 indicates
that the person is female. This data will be used in examples fairly extensively in what follows.

The program ExploreMEPS.m shows how the data may be read in, and gives some descriptive
information about variables, which follows:

All of the measures of use are count data, which means that they take on the values 0, 1, 2, .... It
might be reasonable to try to use this information by specifying the density as a count data density.
One of the simplest count data densities is the Poisson density, which is

fY (y) = exp(−λ)λy
y! .

http://pareto.uab.es/mcreel/Econometrics/Examples/Data/meps1996.data
http://www.meps.ahrq.gov/
http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-I/ExploreMEPS.m


For this density, E(Y ) = V (Y ) = λ. The Poisson average log-likelihood function is

sn(θ) = 1
n

n∑
i=1

(−λi + yi ln λi − ln yi!)

We will parameterize the model as

λi = exp(x′iβ)
xi = [1 PUBLIC PRIV SEX AGE EDUC INC]′ (11.1)

This ensures that the mean is positive, as is required for the Poisson model, and now the mean (and
the variance) depend upon explanatory variables. Note that for this parameterization

∂λ

∂xj
= λβj

so

βjxj = ∂λ

∂xj

xj
λ

= ηλxj ,

the elasticity of the conditional mean of y with respect to the jth conditioning variable.
The program EstimatePoisson.m estimates a Poisson model using the full data set. The results of

the estimation, using OBDV as the dependent variable are here:

MPITB extensions found

OBDV

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-I/EstimatePoisson.m


******************************************************
Poisson model, MEPS 1996 full data set

MLE Estimation Results
BFGS convergence: Normal convergence

Average Log-L: -3.671090
Observations: 4564

estimate st. err t-stat p-value
constant -0.791 0.149 -5.290 0.000
pub. ins. 0.848 0.076 11.093 0.000
priv. ins. 0.294 0.071 4.137 0.000
sex 0.487 0.055 8.797 0.000
age 0.024 0.002 11.471 0.000
edu 0.029 0.010 3.061 0.002
inc -0.000 0.000 -0.978 0.328

Information Criteria
CAIC : 33575.6881 Avg. CAIC: 7.3566
BIC : 33568.6881 Avg. BIC: 7.3551



AIC : 33523.7064 Avg. AIC: 7.3452
******************************************************

11.5 Numeric optimization: pitfalls

In this section we’ll examine two common problems that can be encountered when doing numeric
optimization of nonlinear models, and some solutions.

Poor scaling of the data

When the data is scaled so that the magnitudes of the first and second derivatives are of different
orders, problems can easily result. If we uncomment the appropriate line in EstimatePoisson.m, the
data will not be scaled, and the estimation program will have difficulty converging (it seems to take
an infinite amount of time). With unscaled data, the elements of the score vector have very different
magnitudes at the initial value of θ (all zeros). To see this run CheckScore.m. With unscaled data,
one element of the gradient is very large, and the maximum and minimum elements are 5 orders of
magnitude apart. This causes convergence problems due to serious numerical inaccuracy when doing
inversions to calculate the BFGS direction of search. With scaled data, none of the elements of the
gradient are very large, and the maximum difference in orders of magnitude is 3. Convergence is quick.

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-I/EstimatePoisson.m
http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-I/CheckScore.m


Figure 11.5: Mountains with low fog

Multiple optima

Multiple optima (one global, others local) can complicate life, since we have limited means of deter-
mining if there is a higher maximum than the one we’re at. Think of climbing a mountain in an
unknown range, in a very foggy place. A nice picture is Figure 11.5, but try to imagine the scene if
the clouds were 2000m thicker. A representation is Figure 11.6). You can go up until there’s nowhere
else to go up, but since you’re in the fog you don’t know if the true summit is across the gap that’s at
your feet. Do you claim victory and go home, or do you trudge down the gap and explore the other
side?



Figure 11.6: A foggy mountain



The best way to avoid stopping at a local maximum is to use many starting values, for example
on a grid, or randomly generated. Or perhaps one might have priors about possible values for the
parameters (e.g., from previous studies of similar data).

Let’s try to find the true minimizer of minus 1 times the foggy mountain function (since the
algorithms are set up to minimize). From the picture, you can see it’s close to (0, 0), but let’s pretend
there is fog, and that we don’t know that. The program FoggyMountain.m shows that poor start
values can lead to problems. It uses SA, which finds the true global minimum, and it shows that
BFGS using a battery of random start values can also find the global minimum help. The output of
one run is here:

MPITB extensions found

======================================================
BFGSMIN final results

Used numeric gradient

------------------------------------------------------
STRONG CONVERGENCE
Function conv 1 Param conv 1 Gradient conv 1
------------------------------------------------------
Objective function value -0.0130329
Stepsize 0.102833
43 iterations

http://pareto.uab.es/mcreel/Econometrics/Examples/NonlinearOptimization/FoggyMountain.m


------------------------------------------------------

param gradient change
15.9999 -0.0000 0.0000

-28.8119 0.0000 0.0000
The result with poor start values
ans =

16.000 -28.812

================================================
SAMIN final results
NORMAL CONVERGENCE

Func. tol. 1.000000e-10 Param. tol. 1.000000e-03
Obj. fn. value -0.100023

parameter search width
0.037419 0.000018
-0.000000 0.000051

================================================
Now try a battery of random start values and



a short BFGS on each, then iterate to convergence
The result using 20 randoms start values
ans =

3.7417e-02 2.7628e-07

The true maximizer is near (0.037,0)

In that run, the single BFGS run with bad start values converged to a point far from the true minimizer,
which simulated annealing and BFGS using a battery of random start values both found the true
maximizer. Using a battery of random start values, we managed to find the global max. The moral
of the story is to be cautious and don’t publish your results too quickly.



11.6 Exercises

1. In octave, type ”help bfgsmin_example”, to find out the location of the file. Edit the file to
examine it and learn how to call bfgsmin. Run it, and examine the output.

2. In octave, type ”help samin_example”, to find out the location of the file. Edit the file to
examine it and learn how to call samin. Run it, and examine the output.

3. Numerically minimize the function sin(x) + 0.01 (x− a)2, setting a = 0, using the software of
your choice. Plot the function over the interval (−2π, 2π). Does the software find the global
minimum? Does this depend on the starting value you use? Outline a strategy that would allow
you to find the minimum reliably, when a can take on any given value in the interval (−π, π).

4. Numerically compute the OLS estimator of the Nerlove model by using an interative minimization
algorithm to minimize the sum of squared residuals. Verify that the results coincide with those
given in subsection 3.8. The important part of this problem is to learn how to minimize a
function that depends on both parameters and data. Try to write your function so that it is
easy to use it with an arbitrary data set.



Chapter 12

Asymptotic properties of
extremum estimators

Readings: Hayashi (2000), Ch. 7; Gourieroux and Monfort (1995), Vol. 2, Ch. 24; Amemiya, Ch.
4 section 4.1; Davidson and MacKinnon, pp. 591-96; Gallant, Ch. 3; Newey and McFadden (1994),
“Large Sample Estimation and Hypothesis Testing,” in Handbook of Econometrics, Vol. 4, Ch. 36.

12.1 Extremum estimators

We’ll begin with study of extremum estimators in general. Let Zn = {z1, z2, ..., zn} be the available
data, arranged in a n× p matrix, based on a sample of size n (there are p variables). Our paradigm is
that data are generated as a draw from the joint density fZn(z). This density may not be known, but
it exists in principle. The draw from the density may be thought of as the outcome of a random ex-
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periment that is characterized by the probability space {Ω,F , P}. When the experiment is performed,
ω ∈ Ω is the result, and Zn(ω) = {Z1(ω), Z2(ω), ..., Zn(ω)} = {z1, z2, ..., zn} is the realized data. The
probability space is rich enough to allow us to consider events defined in terms of an infinite sequence
of data Z = {z1, z2, ..., }.

Definition 25. [Extremum estimator] An extremum estimator θ̂ is the optimizing element of an
objective function sn(Zn, θ) over a set Θ.

Because the data Zn(ω) depends on ω, we can emphasize this by writing sn(ω, θ). I’ll be loose with
notation and interchange when convenient.

Example 26. OLS. Let the d.g.p. be yt = x′tθ0 + εt, t = 1, 2, ..., n, θ0 ∈ Θ. Stacking observations
vertically, yn = Xnθ

0 + εn, where Xn =
(
x1 x2 · · · xn

)′
. Let Zn = [yn Xn]. The least squares

estimator is defined as
θ̂ ≡ arg min

Θ
sn(Zn, θ)

where
sn(Zn, θ) = 1/n

n∑
t=1

(yt − x′tθ)
2

As you already know, θ̂ = (X′X)−1X′y.

.

Example 27. Maximum likelihood. Suppose that the continuous random variables Yt ∼ IIN(θ0, σ2
0), t =

1, 2, ..., n. If ε is a standard normal random variable, its density is

fε(z; θ) = (2π)−1/2 exp
−z2

2

 .



We have that εt = (Yt − θ0)/σ0 is standard normal, and the Jacobian |∂εt/∂yt| = 1/σ0. Thus, doing a
change of variable, the density of a single observation on Y is

fY (yt; θ, σ) = (2π)−1/2 (1/σ) exp
−1

2

(
yt − θ
σ

)2 .
The maximum likelihood estimator is maximizes the joint density of the sample. Because the data are
i.i.d., the joint density of the sample {y1, y2, ..., yn} is the product of the densities of each observation,
and the ML estimator is

θ̂ ≡ arg max
Θ
Ln(θ) =

n∏
t=1

(2π)−1/2 (1/σ) exp
−(yt − θ)2

2



Because the natural logarithm is strictly increasing on (0,∞), maximization of the average logarithmic
likelihood function is achieved at the same θ̂ as for the likelihood function. So, the ML estimator
θ̂ ≡ arg maxΘ sn(θ) where

sn(θ) = (1/n) lnLn(θ) = − ln
√

2π − logσ − (1/n)
n∑
t=1

(yt − θ)2

2

Solution of the f.o.c. leads to the familiar result that θ̂ = ȳ. We’ll come back to this in more detail
later.

Example 28. Bayesian estimator
Bayesian point estimators such as the posterior mode, median or mean can be expressed as ex-

tremum estimators. For example, the posterior mean E(θ|Zn) is the minimizer (with respect to ζ) of



the function
sn(ζ) =

∫
Θ

(θ − ζ)2 f(Zn; θ)π(θ)/f(Zn)dθ

where f(Zn; θ) is the likelihood function, π(θ) is a prior density, and f(Zn) is the marginal likelihood
of the data. These concepts are explained later, for now the point is that Bayesian estimators can be
thought of as extremum estimators, and the theory for extremum estimators will apply.

Note that the objective function sn(Zn, θ) is a random function, because it depends on Zn(ω) =
{Z1(ω), Z2(ω), ..., Zn(ω)} = {z1, z2, ..., zn}. We need to consider what happens as different outcomes
ω ∈ Ω occur. These different outcomes lead to different data being generated, and the different
data causes the objective function to change. Note, however, that for a fixed ω ∈ Ω, the data
Zn(ω) = {Z1(ω), Z2(ω), ..., Zn(ω)} = {z1, z2, ..., zn} are a fixed realization, and the objective function
sn(Zn, θ) becomes a non-random function of θ. When actually computing an extremum estimator,
we treat the data as fixed, and employ algorithms for optimization of nonstochastic functions. When
analyzing the properties of an extremum estimator, we need to investigate what happens throughout
Ω: we do not focus only on the ω that generated the observed data. This is because we would like to
find estimators that work well on average for any data set that can result from ω ∈ Ω.

We’ll often write the objective function suppressing the dependence on Zn, as sn(ω, θ) or simply
sn(θ), depending on context. The first of these emphasizes the fact that the objective function is
random, and the second is more compact. However, the data is still in there, and because the data is
randomly sampled, the objective function is random, too.



12.2 Existence

If sn(θ) is continuous in θ and Θ is compact, then a maximizer exists, by the Weierstrass maximum
theorem (Debreu, 1959). In some cases of interest, sn(θ) may not be continuous. Nevertheless, it
may still converge to a continous function, in which case existence will not be a problem, at least
asymptotically. Henceforth in this course, we assume that sn(θ) is continuous.

12.3 Consistency

The following theorem is patterned on a proof in Gallant (1987) (the article, ref. later), which we’ll see
in its original form later in the course. It is interesting to compare the following proof with Amemiya’s
Theorem 4.1.1, which is done in terms of convergence in probability.

Theorem 29. [Consistency of e.e.] Suppose that θ̂n is obtained by maximizing sn(θ) over Θ.
Assume
(a) Compactness: The parameter space Θ is an open bounded subset of Euclidean space <K . So the

closure of Θ, Θ, is compact.
(b) Uniform Convergence: There is a nonstochastic function s∞(θ) that is continuous in θ on Θ

such that
lim
n→∞ sup

θ∈Θ
|sn(ω, θ)− s∞(θ)| = 0, a.s.

(c) Identification: s∞(·) has a unique global maximum at θ0 ∈ Θ, i.e., s∞(θ0) > s∞(θ), ∀θ 6= θ0, θ ∈
Θ

Then θ̂n a.s.→ θ0.



Proof: Select a ω ∈ Ω and hold it fixed. Then {sn(ω, θ)} is a fixed sequence of functions. Suppose
that ω is such that sn(ω, θ) converges to s∞(θ). This happens with probability one by assumption (b).
The sequence {θ̂n} lies in the compact set Θ, by assumption (a) and the fact that maximixation is over
Θ. Since every sequence from a compact set has at least one limit point (Bolzano-Weierstrass), say
that θ̂ is a limit point of {θ̂n}. There is a subsequence {θ̂nm} ({nm} is simply a sequence of increasing
integers) with limm→∞ θ̂nm = θ̂. By uniform convergence and continuity,

lim
m→∞ snm(θ̂nm) = s∞(θ̂).

To see this, first of all, select an element θ̂t from the sequence
{
θ̂nm

}
. Then uniform convergence implies

lim
m→∞ snm(θ̂t) = s∞(θ̂t)

Continuity of s∞ (·) implies that
lim
t→∞

s∞(θ̂t) = s∞(θ̂)

since the limit as t→∞ of
{
θ̂t
}
is θ̂. So the above claim is true.

Next, by maximization
snm(θ̂nm) ≥ snm(θ0)

which holds in the limit, so
lim
m→∞ snm(θ̂nm) ≥ lim

m→∞ snm(θ0).

However,
lim
m→∞ snm(θ̂nm) = s∞(θ̂),



as seen above, and
lim
m→∞ snm(θ0) = s∞(θ0)

by uniform convergence, so
s∞(θ̂) ≥ s∞(θ0).

But by assumption (3), there is a unique global maximum of s∞(θ) at θ0, so we must have s∞(θ̂) =
s∞(θ0), and θ̂ = θ0 in the limit. Finally, all of the above limits hold almost surely, since so far we
have held ω fixed, but now we need to consider all ω ∈ Ω. Therefore {θ̂n} has only one limit point,
θ0, except on a set C ⊂ Ω with P (C) = 0.

Discussion of the proof:

• This proof relies on the identification assumption of a unique global maximum at θ0. An equiv-
alent way to state this is

(c) Identification: Any point θ in Θ with s∞(θ) ≥ s∞(θ0) must be such that ‖ θ − θ0 ‖= 0, which
matches the way we will write the assumption in the section on nonparametric inference.

• We assume that θ̂n is in fact a global maximum of sn (θ) . It is not required to be unique for n
finite, though the identification assumption requires that the limiting objective function have a
unique maximizing argument. The previous section on numeric optimization methods showed
that actually finding the global maximum of sn (θ) may be a non-trivial problem.

• See Amemiya’s Example 4.1.4 for a case where discontinuity leads to breakdown of consistency.

• The assumption that θ0 is in the interior of Θ (part of the identification assumption) has not been
used to prove consistency, so we could directly assume that θ0 is simply an element of a compact



set Θ. The reason that we assume it’s in the interior here is that this is necessary for subsequent
proof of asymptotic normality, and I’d like to maintain a minimal set of simple assumptions, for
clarity. Parameters on the boundary of the parameter set cause theoretical difficulties that we
will not deal with in this course. Just note that conventional hypothesis testing methods do not
apply in this case.

• Note that sn (θ) is not required to be continuous, though s∞(θ) is.

• The following figures illustrate why uniform convergence is important. In the second figure, if the
function is not converging quickly enough around the lower of the two maxima. If the pointwise
convergence in this region is slow enough, there is no guarantee that the maximizer will be in the
neighborhood of the global maximizer of s∞(θ), even when n is very large. Uniform comvergence
means that we are in the situation of the top graphic. As long as n is large enough, the maximum
will be in the neighborhood of the global maximum of s∞(θ).



With uniform convergence, the maximum of the sample

objective function eventually must be in the neighborhood

of the maximum of the limiting objective function



With pointwise convergence, the sample objective function

may have its maximum far away from that of the limiting

objective function

Sufficient conditions for assumption (b)

We need a uniform strong law of large numbers in order to verify assumption (2) of Theorem 29. To
verify the uniform convergence assumption, it is often feasible to employ the following set of stronger
assumptions:

• the parameter space is compact, which is given by assumption (b)

• the objective function sn(θ) is continuous and bounded with probability one on the entire pa-
rameter space



• a standard SLLN can be shown to apply to some point θ in the parameter space. That is, we
can show that sn(θ) a.s.→ s∞(θ) for some θ. Note that in most cases, the objective function will be
an average of terms, such as

sn(θ) = 1
n

n∑
t=1

st(θ)

As long as the st(θ) are not too strongly dependent, and have finite variances, we can usually
find a SLLN that will apply.

With these assumptions, it can be shown that pointwise convergence holds throughout the parameter
space, so we obtain the needed uniform convergence.

These are reasonable conditions in many cases, and henceforth when dealing with specific estimators
we’ll simply assume that pointwise almost sure convergence can be extended to uniform almost sure
convergence in this way.

More on the limiting objective function

The limiting objective function in assumption (b) is s∞(θ). What is the nature of this function and
where does it come from?

• Remember our paradigm - data is presumed to be generated as a draw from fZn(z), and the
objective function is sn(Zn, θ).

• Usually, sn(Zn, θ) is an average of terms.

• The limiting objective function is found by applying a strong (weak) law of large numbers to
sn(Zn, θ).



• A strong (weak) LLN says that an average of terms converges almost surely (in probability) to
the limit of the expectation of the average.

Supposing one holds,

s∞(θ) = lim
n→∞ Esn(Zn, θ) = lim

n→∞

∫
Zn
sn(z, θ)fZn(z)dz

Now suppose that the density fZn(z) that characterizes the DGP is parametric: fZn(z; ρ), ρ ∈ %, and
the data is generated by ρ0 ∈ %. Now we have two parameters to worry about, θ and ρ. We are
probably interested in learning about the true DGP, which means that ρ0 is the item of interest.
When the DGP is parametric, the limiting objective function is

s∞(θ) = lim
n→∞ Esn(Zn, θ) = lim

n→∞

∫
Zn
sn(z, θ)fZn(z; ρ0)dz

and we can write the limiting objective function as s∞(θ, ρ0) to emphasize the dependence on the
parameter of the DGP. From the theorem, we know that θ̂n a.s.→ θ0 What is the relationship between θ0

and ρ0?

• ρ and θ may have different dimensions. Often, the statistical model (with parameter θ) only
partially describes the DGP. For example, the case of OLS with errors of unknown distribution.
In some cases, the dimension of θ may be greater than that of ρ. For example, fitting a polynomial
to an unknown nonlinear function.

• If knowledge of θ0 is sufficient for knowledge of ρ0, we have a correctly and fully specified model.
θ0 is referred to as the true parameter value.



• If knowledge of θ0 is sufficient for knowledge of some but not all elements of ρ0, we have a correctly
specified semiparametric model. θ0 is referred to as the true parameter value, understanding that
not all parameters of the DGP are estimated.

• If knowledge of θ0 is not sufficient for knowledge of any elements of ρ0, or if it causes us to draw
false conclusions regarding at least some of the elements of ρ0, our model is misspecified. θ0 is
referred to as the pseudo-true parameter value.

Summary

The theorem for consistency is really quite intuitive. It says that with probability one, an extremum
estimator converges to the value that maximizes the limit of the expectation of the objective function.
Because the objective function may or may not make sense, depending on how good or poor is the
model, we may or may not be estimating parameters of the DGP.

12.4 Example: Consistency of Least Squares

We suppose that data is generated by random sampling of (Y,X), where yt = β0xt +εt. (X, ε) has the
common distribution function FZ = µxµε (x and ε are independent) with support Z = X ×E . Suppose
that the variances σ2

X and σ2
ε are finite. The sample objective function for a sample size n is

sn(θ) = 1/n
n∑
t=1

(yt − βxt)2 = 1/n
n∑
i=1

(β0xt + εt − βxt)2

= 1/n
n∑
t=1

(xt (β0 − β))2 + 2/n
n∑
t=1

xt (β0 − β) εt + 1/n
n∑
t=1

ε2
t



• Considering the last term, by the SLLN,

1/n
n∑
t=1

ε2
t
a.s.→

∫
X

∫
E
ε2dµXdµE = σ2

ε .

• Considering the second term, since E(ε) = 0 and X and ε are independent, the SLLN implies
that it converges to zero.

• Finally, for the first term, for a given β, we assume that a SLLN applies so that

1/n
n∑
t=1

(xt (β0 − β))2 a.s.→
∫
X

(x (β0 − β))2 dµX (12.1)

=
(
β0 − β

)2 ∫
X
x2dµX

=
(
β0 − β

)2
E
(
X2)

Finally, the objective function is clearly continuous, and the parameter space is assumed to be compact,
so the convergence is also uniform. Thus,

s∞(β) =
(
β0 − β

)2
E
(
X2) + σ2

ε

A minimizer of this is clearly β = β0.

Exercise 30. Show that in order for the above solution to be unique it is necessary that E(X2) 6= 0.
Interpret this condition.

This example shows that Theorem 29 can be used to prove strong consistency of the OLS estimator.
There are easier ways to show this, of course - this is only an example of application of the theorem.



12.5 Example: Inconsistency of Misspecified Least Squares

You already know that the OLS estimator is inconsistent when relevant variables are omitted. Let’s
verify this result in the context of extremum estimators. We suppose that data is generated by random
sampling of (Y,X), where yt = β0xt +εt. (X, ε) has the common distribution function FZ = µxµε (x
and ε are independent) with support Z = X × E . Suppose that the variances σ2

X and σ2
ε are finite.

However, the econometrician is unaware of the true DGP, and instead proposes the misspecified model
yt = γ0wt +ηt. Suppose that E(Wε) = 0 but that E(WX) 6= 0.

The sample objective function for a sample size n is

sn(γ) = 1/n
n∑
t=1

(yt − γwt)2 = 1/n
n∑
i=1

(β0xt + εt − γwt)2

= 1/n
n∑
t=1

(β0xt)2 + 1/n
n∑
t=1

(γwt)2 + 1/n
n∑
t=1

ε2
t + 2/n

n∑
t=1

β0xtεt − 2/n
n∑
t=1

β0γxtwt − 2/n
n∑
t=1

εtxtwt

Using arguments similar to above,

s∞(γ) = γ2E
(
W 2)− 2β0γE(WX) + C

So, γ0 = β0E(WX)
E(W 2) , which is the true parameter of the DGP, multiplied by the pseudo-true value of a

regression of X on W. The OLS estimator is not consistent for the true parameter, β0

12.6 Example: Linearization of a nonlinear model

Ref. Gourieroux and Monfort, section 8.3.4. White, Intn’l Econ. Rev. 1980 is an earlier reference.



Suppose we have a nonlinear model

yi = h(xi, θ0) + εi

where
εi ∼ iid(0, σ2)

The nonlinear least squares estimator solves

θ̂n = arg min 1
n

n∑
i=1

(yi − h(xi, θ))2

We’ll study this more later, but for now it is clear that the foc for minimization will require solving
a set of nonlinear equations. A common approach to the problem seeks to avoid this difficulty by
linearizing the model. A first order Taylor’s series expansion about the point x0 with remainder gives

yi = h(x0, θ0) + (xi − x0)′
∂h(x0, θ

0)
∂x

+ νi

where νi encompasses both εi and the Taylor’s series remainder. Note that νi is no longer a classical
error - its mean is not zero. We should expect problems.

Define

α∗ = h(x0, θ
0)− x′0

∂h(x0, θ0)
∂x

β∗ = ∂h(x0, θ
0)

∂x



Given this, one might try to estimate α∗ and β∗ by applying OLS to

yi = α + βxi + νi

• Question, will α̂ and β̂ be consistent for α∗ and β∗?

• The answer is no, as one can see by interpreting α̂ and β̂ as extremum estimators. Let γ = (α, β′)′.

γ̂ = arg min sn(γ) = 1
n

n∑
i=1

(yi − α− βxi)2

The objective function converges to its expectation

sn(γ) u.a.s.→ s∞(γ) = EXEY |X (y − α− βx)2

and γ̂ converges a.s. to the γ0 that minimizes s∞(γ):

γ0 = arg min EXEY |X (y − α− βx)2

Noting that

EXEY |X (y − α− x′β)2 = EXEY |X
(
h(x, θ0) + ε− α− βx

)2

= σ2 + EX
(
h(x, θ0)− α− βx

)2

since cross products involving ε drop out. α0 and β0 correspond to the hyperplane that is closest to
the true regression function h(x, θ0) according to the mean squared error criterion. This depends on
both the shape of h(·) and the density function of the conditioning variables.
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Inconsistency of the linear approximation, even at 

the approximation point

h(x,θ)

• It is clear that the tangent line does not minimize MSE, since, for example, if h(x, θ0) is concave,
all errors between the tangent line and the true function are negative.

• Note that the true underlying parameter θ0 is not estimated consistently, either (it may be of a
different dimension than the dimension of the parameter of the approximating model, which is
2 in this example).

• Second order and higher-order approximations suffer from exactly the same problem, though
to a less severe degree, of course. For this reason, translog, Generalized Leontiev and other
“flexible functional forms” based upon second-order approximations in general suffer from bias
and inconsistency. The bias may not be too important for analysis of conditional means, but it
can be very important for analyzing first and second derivatives. In production and consumer



analysis, first and second derivatives (e.g., elasticities of substitution) are often of interest, so
in this case, one should be cautious of unthinking application of models that impose stong
restrictions on second derivatives.

• This sort of linearization about a long run equilibrium is a common practice in dynamic macroe-
conomic models. It is justified for the purposes of theoretical analysis of a model given the
model’s parameters, but it is not justifiable for the estimation of the parameters of the model
using data. The section on simulation-based methods offers a means of obtaining consistent esti-
mators of the parameters of dynamic macro models that are too complex for standard methods
of analysis.

12.7 Asymptotic Normality

A consistent estimator is oftentimes not very useful unless we know how fast it is likely to be converging
to the true value, and the probability that it is far away from the true value. Establishment of
asymptotic normality with a known scaling factor solves these two problems. The following theorem
is similar to Amemiya’s Theorem 4.1.3 (pg. 111).

Theorem 31. [Asymptotic normality of e.e.] In addition to the assumptions of Theorem 29, assume
(a) Jn(θ) ≡ D2

θsn(θ) exists and is continuous in an open, convex neighborhood of θ0.

(b) {Jn(θn)} a.s.→ J∞(θ0), a finite negative definite matrix, for any sequence {θn} that converges
almost surely to θ0.

(c)
√
nDθsn(θ0) d→ N [0, I∞(θ0)] , where I∞(θ0) = limn→∞ V ar

√
nDθsn(θ0)

Then
√
n
(
θ̂ − θ0

)
d→ N [0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1]



Proof: By Taylor expansion:

Dθsn(θ̂n) = Dθsn(θ0) +D2
θsn(θ∗)

(
θ̂ − θ0

)

where θ∗ = λθ̂ + (1− λ)θ0, 0 ≤ λ ≤ 1.

• Note that θ̂ will be in the neighborhood where D2
θsn(θ) exists with probability one as n becomes

large, by consistency.

• Now the l.h.s. of this equation is zero, at least asymptotically, since θ̂n is a maximizer and the
f.o.c. must hold exactly since the limiting objective function is strictly concave in a neighborhood
of θ0.

• Also, since θ∗ is between θ̂n and θ0, and since θ̂n a.s.→ θ0 , assumption (b) gives

D2
θsn(θ∗)

a.s.→ J∞(θ0)

So
0 = Dθsn(θ0) +

[
J∞(θ0) + os(1)

] (
θ̂ − θ0

)
And

0 =
√
nDθsn(θ0) +

[
J∞(θ0) + os(1)

]√
n
(
θ̂ − θ0

)

Now
√
nDθsn(θ0) d→ N [0, I∞(θ0)] by assumption c, so

−
[
J∞(θ0) + os(1)

]√
n
(
θ̂ − θ0

)
d→ N

[
0, I∞(θ0)

]



Also, [J∞(θ0) + os(1)] a.s.→ J (θ0), so

√
n
(
θ̂ − θ0

)
d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1]

by the Slutsky Theorem (see Gallant, Theorem 4.6).
Figure

• Skip this in lecture. A note on the order of these matrices: Supposing that sn(θ) is repre-
sentable as an average of n terms, which is the case for all estimators we consider, D2

θsn(θ) is
also an average of n matrices, the elements of which are not centered (they do not have zero
expectation). Supposing a SLLN applies, the almost sure limit of D2

θsn(θ0), J∞(θ0) = O(1), as
we saw in Example 89. On the other hand, assumption (c):

√
nDθsn(θ0) d→ N [0, I∞(θ0)] means

that
√
nDθsn(θ0) = Op(1)

where we use the result of Example 87. If we were to omit the
√
n, we’d have

Dθsn(θ0) = n−
1
2Op(1)

= Op

(
n−

1
2

)

where we use the fact that Op(nr)Op(nq) = Op(nr+q). The sequence Dθsn(θ0) is centered, so we
need to scale by

√
n to avoid convergence to zero.



Figure 12.1: Effects of I∞ and J∞



12.8 Example: Classical linear model

Let’s use the results to get the asymptotic distribution of the OLS estimator applied to the classical
model, to verify that we obtain the results seen before. The OLS criterion is

sn(β) = 1
n

(y −Xβ)′ (y −Xβ)

= 1
n

(
Xβ0 + ε−Xβ

)′ (
Xβ0 + ε−Xβ

)
= 1

n

[(
β0 − β

)′
X ′X

(
β0 − β

)
− 2ε′Xβ + ε′ε

]

The first derivative is

Dβsn(β) = 1
n

[
−2X ′X

(
β0 − β

)
− 2X ′ε

]
so, evaluating at β0,

Dβsn(β0) = −2X
′ε

n

This has expectation 0, so the variance is the expectation of the outer product:

V ar
√
nDβsn(β0) = E

−√n2X
′ε

n

−√n2X
′ε

n

′
= E4X

′εε′X

n

= 4σ2
εE

X ′X
n





(assuming regressors independent of errors). Therefore

I∞(β0) = lim
n→∞V ar

√
nDβsn(β0)

= 4σ2
εQX

where QX = limE
(
X ′X
n

)
, a finite p.d. matrix, is obtained using a LLN.

The second derivative is
Jn(β) = D2

βsn(β0) = 1
n

[2X ′X] .

A SLLN tells us that this converges almost surely to the limit of its expectation:

J∞(β0) = 2QX

There’s no parameter in that last expression, so uniformity is not an issue.
The asymptotic normality theorem (31) tells us that

√
n
(
β̂ − β0

)
d→ N

[
0,J∞(β0)−1I∞(β0)J∞(β0)−1]

which is, given the above,

√
n
(
β̂ − β0

)
d→ N

0,
Q−1

X

2

 (4σ2
εQX

) Q−1
X

2


or

√
n
(
β̂ − β0

)
d→ N

[
0, Q−1

X σ2
ε

]
.

This is the same thing we saw in equation 4.1, of course. So, the theory seems to work :-)



12.9 Exercises

1. Suppose that xi ∼ uniform(0,1), and yi = 1− x2
i + εi, where εi is iid(0,σ2). Suppose we estimate

the misspecified model yi = α+ βxi + ηi by OLS. Find the numeric values of α0 and β0 that are
the probability limits of α̂ and β̂

2. Verify your results using Octave by generating data that follows the above model, and calculating
the OLS estimator. When the sample size is very large the estimator should be very close to the
analytical results you obtained in question 1.

3. Use the asymptotic normality theorem to find the asymptotic distribution of the ML estimator
of β0 for the model y = xβ0 + ε, where ε ∼ N(0, 1) and is independent of x. This means finding
∂2

∂β∂β′sn(β), J (β0), ∂sn(β)
∂β

∣∣∣∣ , and I(β0). The expressions may involve the unspecified density of x.



Chapter 13

Maximum likelihood estimation

The maximum likelihood estimator is important because it uses all of the information in a fully
specified statistical model. Its use of all of the information causes it to have a number of attractive
properties, foremost of which is asymptotic efficiency. For this reason, the ML estimator can serve as
a benchmark against which other estimators may be measured. The ML estimator requires that the
statistical model be fully specified, which essentially means that there is enough information to draw
data from the DGP, given the parameter. This is a fairly strong requirement, and for this reason we
need to be concerned about the possible misspecification of the statistical model. If this is the case,
the ML estimator will not have the nice properties that it has under correct specification.

333



13.1 The likelihood function

Suppose we have a sample of size n of the random vectors y and z. Suppose the joint density of
Y =

(
y1 . . . yn

)
and Z =

(
z1 . . . zn

)
is characterized by a parameter vector ψ0 :

fY Z(Y, Z, ψ0).

This is the joint density of the sample. This density can be factored as

fY Z(Y, Z, ψ0) = fY |Z(Y |Z, θ0)fZ(Z, ρ0)

The likelihood function is just this density evaluated at other values ψ

L(Y, Z, ψ) = f(Y, Z, ψ), ψ ∈ Ψ,

where Ψ is a parameter space.
The maximum likelihood estimator of ψ0 is the value of ψ that maximizes the likelihood function.
Note that if θ0 and ρ0 share no elements, then the maximizer of the conditional likelihood func-

tion fY |Z(Y |Z, θ) with respect to θ is the same as the maximizer of the overall likelihood function
fY Z(Y, Z, ψ) = fY |Z(Y |Z, θ)fZ(Z, ρ), for the elements of ψ that correspond to θ. In this case, the
variables Z are said to be exogenous for estimation of θ, and we may more conveniently work with the
conditional likelihood function fY |Z(Y |Z, θ) for the purposes of estimating θ0.

When this is the case, the maximum likelihood estimator of θ0 = arg max fY |Z(Y |Z, θ). We’ll
suppose this framework in what follows.



• If the n observations are independent, the likelihood function can be written as

L(Y |Z, θ) =
n∏
t=1

f(yt|zt, θ)

• If this is not possible, we can always factor the likelihood into contributions of observations, by
using the fact that a joint density can be factored into the product of a marginal and conditional
(doing this iteratively)

L(Y, θ) = f(y1|z1, θ)f(y2|y1, z2, θ)f(y3|y1, y2, z3, θ) · · · f(yn|y1,y2, . . . yt−n, zn, θ)

To simplify notation, define

xt = {y1, y2, ..., yt−1, zt}

so x1 = z1, x2 = {y1, z2}, etc. - it contains exogenous and predetermined endogeous variables. Now
the likelihood function can be written as

L(Y, θ) =
n∏
t=1

f(yt|xt, θ)

The criterion function can be defined as the average log-likelihood function:

sn(θ) = 1
n

lnL(Y, θ) = 1
n

n∑
t=1

ln f(yt|xt, θ)



The maximum likelihood estimator may thus be defined equivalently as

θ̂ = arg max sn(θ),

where the set maximized over is defined below. Since ln(·) is a monotonic increasing function, lnL
and L maximize at the same value of θ. Dividing by n has no effect on θ̂.

Example 32. Example: Bernoulli trial
Suppose that we are flipping a coin that may be biased, so that the probability of a heads may not
be 0.5. Maybe we’re interested in estimating the probability of a heads. Let Y = 1(heads) be a
binary variable that indicates whether or not a heads is observed. The outcome of a toss is a Bernoulli
random variable:

fY (y, p0) = py0 (1− p0)1−y , y ∈ {0, 1}
= 0, y /∈ {0, 1}

So a representative term that enters the likelihood function is

fY (y, p) = py (1− p)1−y

and
ln fY (y, p) = y ln p+ (1− y) ln (1− p)



The derivative of this is

∂ ln fY (y, p)
∂p

= y

p
− (1− y)

(1− p)

= y − p
p (1− p)

Averaging this over a sample of size n gives

∂sn(p)
∂p

= 1
n

n∑
i=1

yi − p
p (1− p)

Setting to zero and solving gives
p̂ = ȳ (13.1)

So it’s easy to calculate the MLE of p0 in this case. For future reference, note that E(Y ) =∑Y=1
Y=0 yp

y
0 (1− p0)1−y = p0 and V ar(Y ) = E(Y 2)− [E(Y )]2 = p0 − p2

0.
For this example, sn(p) = 1

n

∑n
t=1 yt ln p+ (1− yt) ln (1− p).

• A LLN tells us that sn(p)→a.s. p0 ln p+ (1− p0) ln(1− p).

• The parameter space is compact (p0 lies between 0 and 1)

• the objective function is continous

• thus, the a.s. convergence is also uniform.

The consistency theorem for extremum estimators tells us that the ML estimator converges to the
value that maximized the limiting objective function. Because s∞(p) = p0 ln p+ (1− p0) ln(1− p), we



can easily check that the maximizer is p0. So, the ML estimator is consistent for the true probability.
In practice, we need to ensure that p stays between 0 and 1. To do this with an unconstrained

optimization algorithm, we can use a parameterization. See subsection 13.8 for an example.
Now imagine that we had a bag full of bent coins, each bent around a sphere of a different radius

(with the head pointing to the outside of the sphere). We might suspect that the probability of a heads
could depend upon the radius. Suppose that pi ≡ p(xi, β) = (1 + exp(−x′iβ))−1 where xi =

[
1 ri

]′
,

so that β is a 2×1 vector. Now
∂pi(β)
∂β

= pi (1− pi)xi

so

∂ ln fY (y, β)
∂β

= y − pi
pi (1− pi)

pi (1− pi)xi

= (yi − p(xi, β))xi

So the derivative of the average log lihelihood function is now

∂sn(β)
∂β

=
∑n
i=1 (yi − p(xi, β))xi

n

This is a set of 2 nonlinear equations in the two unknown elements in β. There is no explicit solution
for the two elements that set the equations to zero. This is commonly the case with ML estimators:
they are often nonlinear, and finding the value of the estimate often requires use of numeric methods
to find solutions to the first order conditions. See Chapter 11 for more information on how to do this.

Example 33. Example: Likelihood function of classical linear regression model



The classical linear regression model with normality is outlined in Section 3.6. The likelihood
function for this model is presented in Section 4.3. A Octave/Matlab example that shows how to
compute the maximum likelihood estimator for data that follows the CLRM with normality is in
NormalExample.m , which makes use of NormalLF.m .

13.2 Consistency of MLE

The MLE is an extremum estimator, given basic assumptions it is consistent for the value that maxi-
mizes the limiting objective function, following Theorem 29. The question is: what is the value that
maximizes s∞(θ)?

Remember that sn(θ) = 1
n lnL(Y, θ), and L(Y, θ0) is the true density of the sample data. For any

θ 6= θ0

E
ln

 L(θ)
L(θ0)

 ≤ ln
E

 L(θ)
L(θ0)


by Jensen’s inequality ( ln (·) is a concave function).

Now, the expectation on the RHS is

E
 L(θ)
L(θ0)

 =
∫ L(θ)
L(θ0)

L(θ0)dy = 1,

since L(θ0) is the density function of the observations, and since the integral of any density is 1.
Therefore, since ln(1) = 0,

E
ln

 L(θ)
L(θ0)

 ≤ 0,

http://pareto.uab.es/mcreel/Econometrics/Examples/MLE/NormalExample.m
http://pareto.uab.es/mcreel/Econometrics/Examples/MLE/NormalLF.m
http://en.wikipedia.org/wiki/Jensen's_inequality


or
E (sn (θ))− E (sn (θ0)) ≤ 0.

A SLLN tells us that sn(θ) a.s.→ s∞(θ, θ0) = lim E (sn (θ)), and with continuity and a compact
parameter space, this is uniform, so

s∞(θ, θ0)− s∞(θ0, θ0) ≤ 0

except on a set of zero probability. Note: the θ0 appears because the expectation is taken with respect
to the true density L(θ0).

By the identification assumption there is a unique maximizer, so the inequality is strict if θ 6= θ0:

s∞(θ, θ0)− s∞(θ0, θ0) < 0,∀θ 6= θ0, a.s.

Therefore, θ0 is the unique maximizer of s∞(θ, θ0), and thus, Theorem 29 tells us that

lim
n→∞ θ̂ = θ0, a.s.

So, the ML estimator is consistent for the true parameter value.

13.3 The score function

Assumption: (Differentiability) Assume that sn(θ) is twice continuously differentiable in a
neighborhood N(θ0) of θ0, at least when n is large enough.



To maximize the log-likelihood function, take derivatives:

gn(Y, θ) = Dθsn(θ)

= 1
n

n∑
t=1

Dθ ln f(yt|xx, θ)

≡ 1
n

n∑
t=1

gt(θ).

This is the score vector (with dim K × 1). Note that the score function has Y as an argument, which
implies that it is a random function. Y (and any exogeneous variables) will often be suppressed for
clarity, but one should not forget that they are still there.

The ML estimator θ̂ sets the derivatives to zero:

gn(θ̂) = 1
n

n∑
t=1

gt(θ̂) ≡ 0.

We will show that Eθ [gt(θ)] = 0, ∀t. This is the expectation taken with respect to the density f(θ),
not necessarily f (θ0) .

Eθ [gt(θ)] =
∫

[Dθ ln f(yt|xt, θ)]f(yt|x, θ)dyt

=
∫ 1
f(yt|xt, θ)

[Dθf(yt|xt, θ)] f(yt|xt, θ)dyt

=
∫
Dθf(yt|xt, θ)dyt.

Given some regularity conditions on boundedness of Dθf, we can switch the order of integration and



differentiation, by the dominated convergence theorem. This gives

Eθ [gt(θ)] = Dθ

∫
f(yt|xt, θ)dyt (13.2)

= Dθ1
= 0

where we use the fact that the integral of the density is 1.

• So Eθ(gt(θ) = 0 : the expectation of the score vector is zero.

• This hold for all t, so it implies that Eθgn(Y, θ) = 0.

13.4 Asymptotic normality of MLE

Recall that we assume that the log-likelihood function sn(θ) is twice continuously differentiable. Take
a first order Taylor’s series expansion of g(Y, θ̂) about the true value θ0 :

0 ≡ g(θ̂) = g(θ0) + (Dθ′g(θ∗))
(
θ̂ − θ0

)

or with appropriate definitions
J (θ∗)

(
θ̂ − θ0

)
= −g(θ0),

where θ∗ = λθ̂ + (1− λ)θ0, 0 < λ < 1. Assume J (θ∗) is invertible (we’ll justify this in a minute). So

√
n
(
θ̂ − θ0

)
= −J (θ∗)−1√ng(θ0) (13.3)



Now consider J (θ∗), the matrix of second derivatives of the average log likelihood function. This
is

J (θ∗) = Dθ′g(θ∗)
= D2

θsn(θ∗)

= 1
n

n∑
t=1

D2
θ ln ft(θ∗)

where the notation
D2
θsn(θ) ≡

∂2sn(θ)
∂θ∂θ′

.

Given that this is an average of terms, it should usually be the case that this satisfies a strong law
of large numbers (SLLN). Regularity conditions are a set of assumptions that guarantee that this will
happen. There are different sets of assumptions that can be used to justify appeal to different SLLN’s.
For example, the D2

θ ln ft(θ∗) must not be too strongly dependent over time, and their variances must
not become infinite. We don’t assume any particular set here, since the appropriate assumptions will
depend upon the particularities of a given model. However, we assume that a SLLN applies.

Also, since we know that θ̂ is consistent, and since θ∗ = λθ̂+ (1−λ)θ0, we have that θ∗a.s.→ θ0. Also,
by the above differentiability assumption, J (θ) is continuous in θ. Given this, J (θ∗) converges to the
limit of it’s expectation:

J (θ∗) a.s.→ lim
n→∞ E

(
D2
θsn(θ0)

)
= J∞(θ0) <∞

This matrix converges to a finite limit.
Re-arranging orders of limits and differentiation, which is legitimate given certain regularity con-



ditions related to the boundedness of the log-likelihood function, we get

J∞(θ0) = D2
θ lim
n→∞ E (sn(θ0))

= D2
θs∞(θ0, θ0)

We’ve already seen that
s∞(θ, θ0) < s∞(θ0, θ0)

i.e., θ0 maximizes the limiting objective function. Since there is a unique maximizer, and by the
assumption that sn(θ) is twice continuously differentiable (which holds in the limit), then J∞(θ0)
must be negative definite, and therefore of full rank. Therefore the previous inversion is justified,
asymptotically, and we have

√
n
(
θ̂ − θ0

)
= −J (θ∗)−1√ng(θ0). (13.4)

Now consider
√
ng(θ0). This is

√
ngn(θ0) =

√
nDθsn(θ)

=
√
n

n

n∑
t=1

Dθ ln ft(yt|xt, θ0)

= 1√
n

n∑
t=1

gt(θ0)

We’ve already seen that Eθ [gt(θ)] = 0. As such, it is reasonable to assume that a CLT applies.
Note that gn(θ0) a.s.→ 0, by consistency. To avoid this collapse to a degenerate r.v. (a constant

vector) we need to scale by
√
n. A generic CLT states that, for Xn a random vector that satisfies



certain conditions,
Xn − E(Xn) d→ N(0, lim V (Xn))

The “certain conditions” that Xn must satisfy depend on the case at hand. Usually, Xn will be of the
form of an average, scaled by

√
n:

Xn =
√
n

∑n
t=1Xt

n

This is the case for
√
ng(θ0) for example. Then the properties of Xn depend on the properties of the

Xt. For example, if the Xt have finite variances and are not too strongly dependent, then a CLT for
dependent processes will apply. Supposing that a CLT applies, and noting that E(

√
ngn(θ0) = 0, we

get
√
ngn(θ0) d→ N [0, I∞(θ0)] (13.5)

where

I∞(θ0) = lim
n→∞ Eθ0

(
n [gn(θ0)] [gn(θ0)]′

)
= lim

n→∞Vθ0

(√
ngn(θ0)

)

This can also be written as

• I∞(θ0) is known as the information matrix.

• Combining [13.4] and [13.5], and noting that J (θ∗) a.s.→ J∞(θ0), we get

√
n
(
θ̂ − θ0

)
a∼ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1] .

The MLE estimator is asymptotically normally distributed.



Definition 34. Consistent and asymptotically normal (CAN). An estimator θ̂ of a parameter θ0 is
√
n-consistent and asymptotically normally distributed if

√
n
(
θ̂ − θ0

)
d→ N (0, V∞) where V∞ is a

finite positive definite matrix.

There do exist, in special cases, estimators that are consistent such that
√
n
(
θ̂ − θ0

)
p→ 0. These are

known as superconsistent estimators, since in ordinary circumstances with stationary data,
√
n is the

highest factor that we can multiply by and still get convergence to a stable limiting distribution.

Definition 35. Asymptotically unbiased. An estimator θ̂ of a parameter θ0 is asymptotically unbiased
if

limn→∞ Eθ(θ̂) = θ.
Estimators that are CAN are asymptotically unbiased, though not all consistent estimators are

asymptotically unbiased. Such cases are unusual, though.

13.5 The information matrix equality

We will show that J∞(θ) = −I∞(θ). Let ft(θ) be short for f(yt|xt, θ)

1 =
∫
ft(θ)dy, so

0 =
∫
Dθft(θ)dy

=
∫

(Dθ ln ft(θ)) ft(θ)dy



Now differentiate again:

0 =
∫ [
D2
θ ln ft(θ)

]
ft(θ)dy +

∫
[Dθ ln ft(θ)]Dθ′ft(θ)dy

= Eθ
[
D2
θ ln ft(θ)

]
+
∫

[Dθ ln ft(θ)] [Dθ′ ln ft(θ)] ft(θ)dy
= Eθ

[
D2
θ ln ft(θ)

]
+ Eθ [Dθ ln ft(θ)] [Dθ′ ln ft(θ)]

= Eθ [Jt(θ)] + Eθ [gt(θ)] [gt(θ)]′ (13.6)

Now sum over n and multiply by 1
n

Eθ
1
n

n∑
t=1

[Jt(θ)] = −Eθ
1
n

n∑
t=1

[gt(θ)] [gt(θ)]′
 (13.7)

The scores gt and gs are uncorrelated for t 6= s, since for t > s, ft(yt|y1, ..., yt−1, θ) has conditioned on
prior information, so what was random in s is fixed in t. (This forms the basis for a specification test
proposed by White: if the scores appear to be correlated one may question the specification of the
model). This allows us to write

Eθ [Jn(θ)] = −Eθ
(
n [g(θ)] [g(θ)]′

)

since all cross products between different periods expect to zero. Finally take limits, we get

J∞(θ) = −I∞(θ). (13.8)



This holds for all θ, in particular, for θ0. Using this,

√
n
(
θ̂ − θ0

)
a.s.→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1]

simplifies to
√
n
(
θ̂ − θ0

)
a.s.→ N

[
0, I∞(θ0)−1] (13.9)

or
√
n
(
θ̂ − θ0

)
a.s.→ N

[
0,−J∞(θ0)−1] (13.10)

To estimate the asymptotic variance, we need estimators of J∞(θ0) and I∞(θ0). We can use

Î∞(θ0) = 1
n

n∑
t=1

gt(θ̂)gt(θ̂)′

Ĵ∞(θ0) = Jn(θ̂).

as is intuitive if one considers equation 13.7. Note, one can’t use

Î∞(θ0) = n
[
gn(θ̂)

] [
gn(θ̂)

]′

to estimate the information matrix. Why not?
From this we see that there are alternative ways to estimate V∞(θ0) that are all valid. These include

V̂∞(θ0) = −Ĵ∞(θ0)
−1

V̂∞(θ0) = Î∞(θ0)
−1

V̂∞(θ0) = Ĵ∞(θ0)
−1
Î∞(θ0)Ĵ∞(θ0)

−1



These are known as the inverse Hessian, outer product of the gradient (OPG) and sandwich estimators,
respectively. The sandwich form is the most robust, since it coincides with the covariance estimator
of the quasi-ML estimator.

With a litte more detail, the methods are:

• The sandwich version:

V̂∞ = n



{∑n
t=1D

2
θ ln f(yt|Yt−1, θ̂)

}
×{∑n

t=1

[
Dθ ln f(yt|Yt−1, θ̂)

] [
Dθ ln f(yt|Yt−1, θ̂)

]′}−1
×{∑n

t=1D
2
θ ln f(yt|Yt−1, θ̂)

}



−1

• or the inverse of the negative of the Hessian (since the middle and last term cancel, except for a
minus sign):

V̂∞ =
−1/n

n∑
t=1

D2
θ ln f(yt|Yt−1, θ̂)

−1

,

• or the inverse of the outer product of the gradient (since the middle and last cancel except for a
minus sign, and the first term converges to minus the inverse of the middle term, which is still
inside the overall inverse)

V̂∞ =
1/n

n∑
t=1

[
Dθ ln f(yt|Yt−1, θ̂)

] [
Dθ ln f(yt|Yt−1, θ̂)

]′
−1

.

This simplification is a special result for the MLE estimator - it doesn’t apply to GMM estimators in
general.



• Asymptotically, if the model is correctly specified, all of these forms converge to the same limit.
In small samples they will differ. In particular, there is evidence that the outer product of the
gradient formula does not perform very well in small samples (see Davidson and MacKinnon,
pg. 477).

• White’s Information matrix test (Econometrica, 1982) is based upon comparing the two ways to
estimate the information matrix: outer product of gradient or negative of the Hessian. If they
differ by too much, this is evidence of misspecification of the model.

Example, Coin flipping, again

In section 32 we saw that the MLE for the parameter of a Bernoulli trial, with i.i.d. data, is the sample
mean: p̂ = ȳ (equation 13.1). Now let’s find the limiting variance of

√
n (p̂− p0). We can do this in a

simple way:

lim V ar
√
n (p̂− p0) = limnV ar (p̂− p0)

= limnV ar (p̂)
= limnV ar (ȳ)

= limnV ar

(∑
yt
n

)

= lim 1
n

∑
V ar(yt) (by independence of obs.)

= lim 1
n
nV ar(y) (by identically distributed obs.)

= V ar(y)
= p0 (1− p0)



While that is simple, let’s verify this using the methods of Chapter 12 give the same answer. The
log-likelihood function is

sn(p) = 1
n

n∑
t=1
{yt ln p+ (1− yt) ln (1− p)}

so
Esn(p) = p0 ln p+

(
1− p0) ln (1− p)

by the fact that the observations are i.i.d. Thus, s∞(p) = p0 ln p + (1− p0) ln (1− p). A bit of
calculation shows that

D2
θsn(p)

∣∣∣
p=p0 ≡ Jn(θ) = −1

p0 (1− p0) ,

which doesn’t depend upon n. By results we’ve seen on MLE, lim V ar
√
n (p̂− p0) = −J −1

∞ (p0). And
in this case, −J −1

∞ (p0) = p0 (1− p0). So, we get the same limiting variance using both methods.

Exercise 36. For this example, find I∞(p0).

13.6 The Cramér-Rao lower bound

Theorem 37. [Cramer-Rao Lower Bound] The limiting variance of a CAN estimator of θ0, say θ̃,
minus the inverse of the information matrix is a positive semidefinite matrix.

Proof: Since the estimator is CAN, it is asymptotically unbiased, so

lim
n→∞ Eθ(θ̃ − θ) = 0



Differentiate wrt θ′ :

Dθ′ lim
n→∞ Eθ(θ̃ − θ) = lim

n→∞

∫
Dθ′

[
f(Y, θ)

(
θ̃ − θ

)]
dy

= 0 (this is a K ×K matrix of zeros).

Noting that Dθ′f(Y, θ) = f(θ)Dθ′ ln f(θ), we can write

lim
n→∞

∫ (
θ̃ − θ

)
f(θ)Dθ′ ln f(θ)dy + lim

n→∞

∫
f(Y, θ)Dθ′

(
θ̃ − θ

)
dy = 0.

Now note that Dθ′
(
θ̃ − θ

)
= −IK , and

∫
f(Y, θ)(−IK)dy = −IK . With this we have

lim
n→∞

∫ (
θ̃ − θ

)
f(θ)Dθ′ ln f(θ)dy = IK .

Playing with powers of n we get

lim
n→∞

∫ √
n
(
θ̃ − θ

)√
n

1
n

[Dθ′ ln f(θ)]︸ ︷︷ ︸ f(θ)dy = IK

Note that the bracketed part is just the transpose of the score vector, g(θ), so we can write

lim
n→∞ Eθ

[√
n
(
θ̃ − θ

)√
ng(θ)′

]
= IK

This means that the covariance of the score function with
√
n
(
θ̃ − θ

)
, for θ̃ any CAN estimator, is an



identity matrix. Using this, suppose the variance of
√
n
(
θ̃ − θ

)
tends to V∞(θ̃). Therefore,

V∞


√
n
(
θ̃ − θ

)
√
ng(θ)

 =
 V∞(θ̃) IK

IK I∞(θ)

 . (13.11)

Since this is a covariance matrix, it is positive semi-definite. Therefore, for any K -vector α,

[
α′ −α′I−1

∞ (θ)
]  V∞(θ̃) IK

IK I∞(θ)


 α

−I∞(θ)−1α

 ≥ 0.

This simplifies to
α′
[
V∞(θ̃)− I−1

∞ (θ)
]
α ≥ 0.

Since α is arbitrary, V∞(θ̃)− I−1
∞ (θ) is positive semidefinite. This conludes the proof.

This means that I−1
∞ (θ) is a lower bound for the asymptotic variance of a CAN estimator.

(Asymptotic efficiency) Given two CAN estimators of a parameter θ0, say θ̃ and θ̂, θ̂ is asymptoti-
cally efficient with respect to θ̃ if V∞(θ̃)− V∞(θ̂) is a positive semidefinite matrix.

A direct proof of asymptotic efficiency of an estimator is infeasible, but if one can show that the
asymptotic variance is equal to the inverse of the information matrix, then the estimator is asymp-
totically efficient. In particular, the MLE is asymptotically efficient with respect to any other CAN
estimator.



13.7 Likelihood ratio-type tests

Suppose we would like to test a set of q possibly nonlinear restrictions r(θ) = 0, where the q×k matrix
Dθ′r(θ) has rank q. The Wald test can be calculated using the unrestricted model. The score test can
be calculated using only the restricted model. The likelihood ratio test, on the other hand, uses both
the restricted and the unrestricted estimators. The test statistic is

LR = 2
(
lnL(θ̂)− lnL(θ̃)

)

where θ̂ is the unrestricted estimate and θ̃ is the restricted estimate. To show that it is asymptotically
χ2, take a second order Taylor’s series expansion of lnL(θ̃) about θ̂ :

lnL(θ̃) ' lnL(θ̂) + n

2
(
θ̃ − θ̂

)′
J (θ̂)

(
θ̃ − θ̂

)

(note, the first order term drops out since Dθ lnL(θ̂) ≡ 0 by the fonc and we need to multiply the
second-order term by n since J (θ) is defined in terms of 1

n lnL(θ)) so

LR ' −n
(
θ̃ − θ̂

)′
J (θ̂)

(
θ̃ − θ̂

)

As n→∞,J (θ̂)→ J∞(θ0) = −I(θ0), by the information matrix equality. So

LR
a= n

(
θ̃ − θ̂

)′
I∞(θ0)

(
θ̃ − θ̂

)
(13.12)



We also have that, from the theory on the asymptotic normality of the MLE and the information
matrix equality

√
n
(
θ̂ − θ0

)
a= I∞(θ0)−1n1/2g(θ0).

An analogous result for the restricted estimator is (this is unproven here, to prove this set up the
Lagrangean for MLE subject to Rβ = r, and manipulate the first order conditions) :

√
n
(
θ̃ − θ0

) a= I∞(θ0)−1
(
In −R′

(
RI∞(θ0)−1R′

)−1
RI∞(θ0)−1

)
n1/2g(θ0).

Combining the last two equations

√
n
(
θ̃ − θ̂

)
a= −n1/2I∞(θ0)−1R′

(
RI∞(θ0)−1R′

)−1
RI∞(θ0)−1g(θ0)

so, substituting into [13.12]

LR
a=
[
n1/2g(θ0)′I∞(θ0)−1R′

] [
RI∞(θ0)−1R′

]−1 [
RI∞(θ0)−1n1/2g(θ0)

]

But since
n1/2g(θ0) d→ N (0, I∞(θ0))

the linear function
RI∞(θ0)−1n1/2g(θ0) d→ N(0, RI∞(θ0)−1R′).

We can see that LR is a quadratic form of this rv, with the inverse of its variance in the middle, so

LR
d→ χ2(q).



Summary of MLE

• Consistent

• Asymptotically normal (CAN)

• Asymptotically efficient

• Asymptotically unbiased

• LR test is available for testing hypothesis

• The presentation is for general MLE: we haven’t specified the distribution or the linearity/non-
linearity of the estimator

13.8 Examples

ML of Nerlove model, assuming normality

As we saw in Section 4.3, the ML and OLS estimators of β in the linear model y = Xβ + ε coincide
when ε is assumed to be i.i.d. normally distributed. The Octave script NerloveMLE.m verifies this
result, for the basic Nerlove model (eqn. 3.10). The output of the script follows:

******************************************************
check MLE with normality, compare to OLS

MLE Estimation Results

http://pareto.uab.es/mcreel/Econometrics/Examples/MLE/NerloveMLE.m


BFGS convergence: Normal convergence

Average Log-L: -0.465806
Observations: 145

estimate st. err t-stat p-value
constant -3.527 1.689 -2.088 0.037
output 0.720 0.032 22.491 0.000
labor 0.436 0.241 1.808 0.071
fuel 0.427 0.074 5.751 0.000
capital -0.220 0.318 -0.691 0.490
sig 0.386 0.041 9.290 0.000

Information Criteria
CAIC : 170.9442 Avg. CAIC: 1.1789
BIC : 164.9442 Avg. BIC: 1.1375
AIC : 147.0838 Avg. AIC: 1.0144
******************************************************

Compare the output to that of Nerlove.m , which does OLS. The script also provides a basic example
of how to use the MLE estimation routing mle_results.m

http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/Nerlove.m


Example: Binary response models: theory

This section extends the Bernoulli trial model to binary response models with conditioning variables,
as such models arise in a variety of contexts.

Assume that

y∗ = x′θ − ε
y = 1(y∗ > 0)
ε ∼ N(0, 1)

Here, y∗ is an unobserved (latent) continuous variable, and y is a binary variable that indicates whether
y∗is negative or positive. Then the probit model results, where Pr(y = 1|x) = Pr(ε < x′θ) = Φ(x′θ),
where

Φ(•) =
∫ xβ
−∞

(2π)−1/2 exp(−ε
2

2 )dε

is the standard normal distribution function.
The logit model results if the errors ε are not normal, but rather have a logistic distribution. This

distribution is similar to the standard normal, but has fatter tails. The probability has the following
parameterization

Pr(y = 1|x) = Λ(x′θ) = (1 + exp(−x′θ))−1
.

In general, a binary response model will require that the choice probability be parameterized in
some form which could be logit, probit, or something else. For a vector of explanatory variables x, the



response probability will be parameterized in some manner

Pr(y = 1|x) = p(x, θ)

Again, if p(x, θ) = Λ(x′θ), we have a logit model. If p(x, θ) = Φ(x′θ), where Φ(·) is the standard
normal distribution function, then we have a probit model.

Regardless of the parameterization, we are dealing with a Bernoulli density,

fYi(yi|xi) = p(xi, θ)yi(1− p(x, θ))1−yi

so as long as the observations are independent, the maximum likelihood (ML) estimator, θ̂, is the
maximizer of

sn(θ) = 1
n

n∑
i=1

(yi ln p(xi, θ) + (1− yi) ln [1− p(xi, θ)])

≡ 1
n

n∑
i=1

s(yi, xi, θ). (13.13)

Following the above theoretical results, θ̂ tends in probability to the θ0 that maximizes the uniform
almost sure limit of sn(θ). Noting that Eyi = p(xi, θ0), and following a SLLN for i.i.d. processes, sn(θ)
converges almost surely to the expectation of a representative term s(y, x, θ). First one can take the
expectation conditional on x to get

Ey|x {y ln p(x, θ) + (1− y) ln [1− p(x, θ)]} = p(x, θ0) ln p(x, θ) + [1− p(x, θ0)] ln [1− p(x, θ)] .



Next taking expectation over x we get the limiting objective function

s∞(θ) =
∫
X
{p(x, θ0) ln p(x, θ) + [1− p(x, θ0)] ln [1− p(x, θ)]}µ(x)dx, (13.14)

where µ(x) is the (joint - the integral is understood to be multiple, and X is the support of x) density
function of the explanatory variables x. This is clearly continuous in θ, as long as p(x, θ) is continuous,
and if the parameter space is compact we therefore have uniform almost sure convergence. Note that
p(x, θ) is continous for the logit and probit models, for example. The maximizing element of s∞(θ),
θ∗, solves the first order conditions

∫
X

p(x, θ0)
p(x, θ∗)

∂

∂θ
p(x, θ∗)− 1− p(x, θ0)

1− p(x, θ∗)
∂

∂θ
p(x, θ∗)

µ(x)dx = 0

This is clearly solved by θ∗ = θ0. Provided the solution is unique, θ̂ is consistent. Question: what’s
needed to ensure that the solution is unique?

The asymptotic normality theorem tells us that

√
n
(
θ̂ − θ0

)
d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1] .

In the case of i.i.d. observations I∞(θ0) = limn→∞ V ar
√
nDθsn(θ0) is simply the expectation of a

typical element of the outer product of the gradient.

• There’s no need to subtract the mean, since it’s zero, following the f.o.c. in the consistency proof
above and the fact that observations are i.i.d.



• The terms in n also drop out by the same argument:

lim
n→∞V ar

√
nDθsn(θ0) = lim

n→∞V ar
√
nDθ

1
n

∑
t
s(θ0)

= lim
n→∞V ar

1√
n
Dθ

∑
t
s(θ0)

= lim
n→∞

1
n
V ar

∑
t
Dθs(θ0)

= lim
n→∞V arDθs(θ0)

= V arDθs(θ0)

So we get
I∞(θ0) = E

{
∂

∂θ
s(y, x, θ0)

∂

∂θ′
s(y, x, θ0)

}
.

Likewise,
J∞(θ0) = E ∂2

∂θ∂θ′
s(y, x, θ0).

Expectations are jointly over y and x, or equivalently, first over y conditional on x, then over x. From
above, a typical element of the objective function is

s(y, x, θ0) = y ln p(x, θ0) + (1− y) ln [1− p(x, θ0)] .

Now suppose that we are dealing with a correctly specified logit model:

p(x, θ) = (1 + exp(−x′θ))−1
.



We can simplify the above results in this case. We have that

∂

∂θ
p(x, θ) = (1 + exp(−x′θ))−2 exp(−x′θ)x

= (1 + exp(−x′θ))−1 exp(−x′θ)
1 + exp(−x′θ)x

= p(x, θ) (1− p(x, θ)) x
=

(
p(x, θ)− p(x, θ)2)x.

So

∂

∂θ
s(y, x, θ0) = [y − p(x, θ0)] x (13.15)

∂2

∂θ∂θ′
s(θ0) = −

[
p(x, θ0)− p(x, θ0)2]xx′.

Taking expectations over y then x gives

I∞(θ0) =
∫
EY

[
y2 − 2p(x, θ0)p(x, θ0) + p(x, θ0)2]xx′µ(x)dx (13.16)

=
∫ [
p(x, θ0)− p(x, θ0)2]xx′µ(x)dx. (13.17)

where we use the fact that EY (y) = EY (y2) = p(x, θ0). Likewise,

J∞(θ0) = −
∫ [
p(x, θ0)− p(x, θ0)2]xx′µ(x)dx. (13.18)

Note that we arrive at the expected result: the information matrix equality holds (that is, J∞(θ0) =



−I∞(θ0)). With this,
√
n
(
θ̂ − θ0

)
d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1]

simplifies to
√
n
(
θ̂ − θ0

)
d→ N

[
0,−J∞(θ0)−1]

which can also be expressed as

√
n
(
θ̂ − θ0

)
d→ N

[
0, I∞(θ0)−1] .

On a final note, the logit and standard normal CDF’s are very similar - the logit distribution is a
bit more fat-tailed. While coefficients will vary slightly between the two models, functions of interest
such as estimated probabilities p(x, θ̂) will be virtually identical for the two models.

Estimation of the logit model

In this section we will consider maximum likelihood estimation of the logit model for binary 0/1
dependent variables. We will use the BFGS algorithm to find the MLE.

A binary response is a variable that takes on only two values, customarily 0 and 1, which can be
thought of as codes for whether or not a condisiton is satisfied. For example, 0=drive to work, 1=take
the bus. Often the observed binary variable, say y, is related to an unobserved (latent) continuous
varable, say y∗. We would like to know the effect of covariates, x, on y. The model can be represented



as

y∗ = g(x)− ε
y = 1(y∗ > 0)

Pr(y = 1) = Fε[g(x)]
≡ p(x, θ)

The log-likelihood function is

sn(θ) = 1
n

n∑
i=1

(yi ln p(xi, θ) + (1− yi) ln [1− p(xi, θ)])

For the logit model, the probability has the specific form

p(x, θ) = 1
1 + exp(−x′θ)

You should download and examine LogitDGP.m , which generates data according to the logit
model, logit.m , which calculates the loglikelihood, and EstimateLogit.m , which sets things up and
calls the estimation routine, which uses the BFGS algorithm.

Here are some estimation results with n = 100, and the true θ = (0, 1)′.

***********************************************
Trial of MLE estimation of Logit model

MLE Estimation Results
BFGS convergence: Normal convergence

http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/LogitDGP.m
http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/Logit.m
http://pareto.uab.es/mcreel/Econometrics/Examples/NonlinearOptimization/EstimateLogit.m


Average Log-L: 0.607063
Observations: 100

estimate st. err t-stat p-value
constant 0.5400 0.2229 2.4224 0.0154
slope 0.7566 0.2374 3.1863 0.0014

Information Criteria
CAIC : 132.6230
BIC : 130.6230
AIC : 125.4127

***********************************************

The estimation program is calling mle_results(), which in turn calls a number of other routines.

Duration data and the Weibull model

In some cases the dependent variable may be the time that passes between the occurence of two
events. For example, it may be the duration of a strike, or the time needed to find a job once one is
unemployed. Such variables take on values on the positive real line, and are referred to as duration
data.

A spell is the period of time between the occurence of initial event and the concluding event. For
example, the initial event could be the loss of a job, and the final event is the finding of a new job.
The spell is the period of unemployment.



Let t0 be the time the initial event occurs, and t1 be the time the concluding event occurs. For
simplicity, assume that time is measured in years. The random variable D is the duration of the spell,
D = t1 − t0. Define the density function of D, fD(t), with distribution function FD(t) = Pr(D < t).

Several questions may be of interest. For example, one might wish to know the expected time one
has to wait to find a job given that one has already waited s years. The probability that a spell lasts
more than s years is

Pr(D > s) = 1− Pr(D ≤ s) = 1− FD(s).

The density of D conditional on the spell being longer than s years is

fD(t|D > s) = fD(t)
1− FD(s) .

The expectanced additional time required for the spell to end given that is has already lasted s years
is the expectation of D with respect to this density, minus s.

E = E(D|D > s)− s =
∫ ∞

t
z

fD(z)
1− FD(s)dz

− s
To estimate this function, one needs to specify the density fD(t) as a parametric density, then

estimate by maximum likelihood. There are a number of possibilities including the exponential density,
the lognormal, etc. A reasonably flexible model that is a generalization of the exponential density is
the Weibull density

fD(t|θ) = e−(λt)γλγ(λt)γ−1.

According to this model, E(D) = λ−γ. The log-likelihood is just the product of the log densities.



To illustrate application of this model, 402 observations on the lifespan of dwarf mongooses (see
Figure 13.1) in Serengeti National Park (Tanzania) were used to fit a Weibull model. The ”spell” in
this case is the lifetime of an individual mongoose. The parameter estimates and standard errors are
λ̂ = 0.559 (0.034) and γ̂ = 0.867 (0.033) and the log-likelihood value is -659.3. Figure 13.2 presents
fitted life expectancy (expected additional years of life) as a function of age, with 95% confidence
bands. The plot is accompanied by a nonparametric Kaplan-Meier estimate of life-expectancy. This
nonparametric estimator simply averages all spell lengths greater than age, and then subtracts age.
This is consistent by the LLN.

In the figure one can see that the model doesn’t fit the data well, in that it predicts life expectancy
quite differently than does the nonparametric model. For ages 4-6, the nonparametric estimate is
outside the confidence interval that results from the parametric model, which casts doubt upon the
parametric model. Mongooses that are between 2-6 years old seem to have a lower life expectancy
than is predicted by the Weibull model, whereas young mongooses that survive beyond infancy have
a higher life expectancy, up to a bit beyond 2 years. Due to the dramatic change in the death rate as
a function of t, one might specify fD(t) as a mixture of two Weibull densities,

fD(t|θ) = δ
(
e−(λ1t)γ1

λ1γ1(λ1t)γ1−1
)

+ (1− δ)
(
e−(λ2t)γ2

λ2γ2(λ2t)γ2−1
)
.

The parameters γi and λi, i = 1, 2 are the parameters of the two Weibull densities, and δ is the
parameter that mixes the two.

With the same data, θ can be estimated using the mixed model. The results are a log-likelihood =
-623.17. Note that a standard likelihood ratio test cannot be used to chose between the two models,
since under the null that δ = 1 (single density), the two parameters λ2 and γ2 are not identified. It is
possible to take this into account, but this topic is out of the scope of this course. Nevertheless, the



Figure 13.1: Dwarf mongooses



Figure 13.2: Life expectancy of mongooses, Weibull model



improvement in the likelihood function is considerable. The parameter estimates are

Parameter Estimate St. Error
λ1 0.233 0.016
γ1 1.722 0.166
λ2 1.731 0.101
γ2 1.522 0.096
δ 0.428 0.035

Note that the mixture parameter is highly significant. This model leads to the fit in Figure 13.3. Note
that the parametric and nonparametric fits are quite close to one another, up to around 6 years. The
disagreement after this point is not too important, since less than 5% of mongooses live more than 6
years, which implies that the Kaplan-Meier nonparametric estimate has a high variance (since it’s an
average of a small number of observations).

Mixture models are often an effective way to model complex responses, though they can suffer from
overparameterization. Alternatives will be discussed later.

For examples of MLE using logit and Poisson model applied to data, see Section ?? in the chapter
on Numerical Optimization. You should examine the scripts and run them to see how MLE is actually
done.

Estimation of a simple DSGE model

Dynamic stochastic general equilibrium model are widely used tools in macroeconomics. These are
models in which current decisions depend upon expectations of future events. An example is the simple
real business cycle model discussed in the file rbc.pdf, by Fernández-Villaverde, which is available on



Figure 13.3: Life expectancy of mongooses, mixed Weibull model



the Dynare web page www.dynare.org. The file EstimateRBC_ML.mod shows how this model may
be estimated, using maximum likelihood methods. The estimation process involves forming a linear
approximation to the true model, which means that the estimator is not actually the true maximum
likelihood estimator, it is actually a ”quasi-ML” estimator. The quasi-likelihood is computed by
putting the linearized model in state-space form, and then computing the likelihood iteratively using
Kalman filtering, which relies on the assumption that shocks to the model are normally distributed.
State space models and Kalman filtering are introduced in Section 15.5. Once the likelihood function
is available, the methods studied in this Chapter may be applied. The intention at the moment is
simple to show that ML is an estimation method that may be applied to complicated and more or less
realistic economic models. If you play around with the estimation program, you will see that difficulties
are encountered with estimating certain parameters. This may be due to an excessive information loss
due to the linearization.

www.dynare.org
http://pareto.uab.es/mcreel/Econometrics/Examples/RBC/EstimateRBC_ML.mod


13.9 Exercises

1. Consider coin tossing with a single possibly biased coin. The density function for the random
variable y = 1(heads) is

fY (y, p0) = py0 (1− p0)1−y , y ∈ {0, 1}
= 0, y /∈ {0, 1}

Suppose that we have a sample of size n. We know from above that the ML estimator is p̂0 = ȳ.
We also know from the theory above that

√
n (ȳ − p0) a∼ N

[
0,J∞(p0)−1I∞(p0)J∞(p0)−1]

a) find the analytic expression for gt(θ) and show that Eθ [gt(θ)] = 0
b) find the analytical expressions for J∞(p0) and I∞(p0) for this problem
c) verify that the result for lim V ar

√
n (p̂− p) found in section 13.5 is equal to J∞(p0)−1I∞(p0)J∞(p0)−1

d) Write an Octave program that does a Monte Carlo study that shows that
√
n (ȳ − p0) is ap-

proximately normally distributed when n is large. Please give me histograms that show the
sampling frequency of

√
n (ȳ − p0) for several values of n.

2. The exponential density is

fX(x) =
 λe−λx, x > 0

0, x < 0

Suppose we have an independently and identically distributed sample of size n, {xi} , i =
1, 2, ..., n, where each xi follows this exponential distribution.



(a) write the log likelihood function

(b) compute the maximum likelihood estimator of the parameter λ.

3. Suppose we have an i.i.d. sample of size n from the Poisson density. The Poisson density is
fy(y;λ) = e−λλy

y! . Verify that the ML estimator is asymptotically distributed as
√
n
(
λ̂− λ0

)
d→

N(0, λ0), where λ0 is the true parameter value. Hint: compute the asymptotic variance using
−J∞(λ0)−1.

4. Consider the model yt = x′tβ + αεt where the errors follow the Cauchy (Student-t with 1 degree
of freedom) density. So

f(εt) = 1
π (1 + ε2t )

,−∞ < εt <∞

The Cauchy density has a shape similar to a normal density, but with much thicker tails. Thus,
extremely small and large errors occur much more frequently with this density than would happen
if the errors were normally distributed. Find the score function gn(θ) where θ =

(
β′ α

)′
.

5. Consider the model classical linear regression model yt = x′tβ + εt where εt ∼ IIN(0, σ2). Find
the score function gn(θ) where θ =

(
β′ σ

)′
.

6. Compare the first order conditions that define the ML estimators of problems 4 and 5 and
interpret the differences. Why are the first order conditions that define an efficient estimator
different in the two cases?

7. Assume a d.g.p. follows the logit model: Pr(y = 1|x) = (1 + exp(−β0x))−1.

(a) Assume that x ∼ uniform(-a,a). Find the asymptotic distribution of the ML estimator of
β0 (this is a scalar parameter).



(b) Now assume that x ∼ uniform(-2a,2a). Again find the asymptotic distribution of the ML
estimator of β0.

(c) Comment on the results

8. There is an ML estimation routine in the provided software that accompanies these notes. Edit
(to see what it does) then run the script mle_example.m. Interpret the output.

9. Estimate the simple Nerlove model discussed in section 3.8 by ML, assuming that the errors are
i.i.d. N(0, σ2) and compare to the results you get from running Nerlove.m .

10. Using logit.m and EstimateLogit.m as templates, write a function to calculate the probit log
likelihood, and a script to estimate a probit model. Run it using data that actually follows a
logit model (you can generate it in the same way that is done in the logit example).

11. Study mle_results.m to see what it does. Examine the functions that mle_results.m calls,
and in turn the functions that those functions call. Write a complete description of how the
whole chain works.

12. In Subsection 11.4 a model is presented for data on health care usage, along with some Octave
scripts. Look at the Poisson estimation results for the OBDV measure of health care use and
give an economic interpretation. Estimate Poisson models for the other 5 measures of health
care usage, using the provided scripts.

http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Econometrics/MLE/mle_example.m
http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/Nerlove.m
http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/Logit.m
http://pareto.uab.es/mcreel/Econometrics/Examples/NonlinearOptimization/EstimateLogit.m


Chapter 14

Generalized method of moments

Readings: Hamilton Ch. 14∗; Davidson and MacKinnon, Ch. 17 (see pg. 587 for refs. to applica-
tions); Newey and McFadden (1994), "Large Sample Estimation and Hypothesis Testing", in Handbook
of Econometrics, Vol. 4, Ch. 36.

14.1 Motivation

The principle of the method of moments is to set the population moment to the sample moment,
then invert to solve for the estimator of the parameter. This is illustrated in Figure 14.1. The sample
moment µ̂ will converge to the true moment µ(θ0), so the estimator will converge to the true parameter
value. We need that the moment function be invertible.

376

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B7GX7-4FPWV09-5&_user=1517286&_coverDate=12%2F31%2F1994&_rdoc=5&_fmt=high&_orig=browse&_srch=doc-info(%23toc%2320479%231994%23999959999%23583590%23FLP%23display%23Volume)&_cdi=20479&_sort=d&_docanchor=&_ct=21&_acct=C000053449&_version=1&_urlVersion=0&_userid=1517286&md5=5a540eb9d22288a9f25f3914db38aa1b
http://www.sciencedirect.com/science/handbooks/15734412
http://www.sciencedirect.com/science/handbooks/15734412


Figure 14.1: Method of Moments



Sampling from χ2(θ0)

Example 38. (Method of moments, v1) Suppose we draw a random sample of yt from the χ2(θ0)
distribution. Here, θ0 is the parameter of interest. The first moment (expectation), µ1, of a random
variable will in general be a function of the parameters of the distribution: µ1 = µ1(θ0) .

In this example, if Y ∼ χ2(θ0), then E(Y ) = θ0, so the relationship is the identity function
µ1(θ0) = θ0, though in general the relationship may be more complicated. The sample first moment is

µ̂1 = ȳ =
n∑
t=1

yt/n.

Define a moment condition as
m1(θ) = µ1(θ)− µ̂1.

The method of moments principle is to choose the estimator of the parameter to set the estimate
of the population moment equal to the sample moment, or equivalently to make the moment condition
equal to zero: m1(θ̂) ≡ 0. Then the equation is solved for the estimator. In this case,

m1(θ̂) = θ̂ −
n∑
t=1

yt/n = 0

is solved by θ̂ = ȳ. Since ȳ = ∑n
t=1 yt/n

p→ θ0 by the LLN, the estimator is consistent.

Example 39. (Method of moments, v2) The variance of a χ2(θ0) r.v. is

V (yt) = E
(
yt − θ0)2 = 2θ0.



The sample variance is V̂ (yt) =
∑n
t=1(yt−ȳ)2

n . Define the an alternative moment condition as the
population moment minus the sample moment:

m2(θ) = V (yt)− V̂ (yt)

= 2θ −
∑n
t=1 (yt − ȳ)2

n

We can see that the average moment condition is the average of the contributions

m2t(θ) = V (yt)− (yt − ȳ)2

The MM estimator using the variance would set

m2(θ̂) = 2θ̂ −
∑n
t=1 (yt − ȳ)2

n
≡ 0.

Again, by the LLN, the sample variance is consistent for the true variance, that is,

∑n
t=1 (yt − ȳ)2

n

p→ 2θ0.

So, the estimator is half the sample variance:

θ̂ = 1
2

∑n
t=1 (yt − ȳ)2

n
,

This estimator is also consistent for θ0.



Example 40. Try some MM estimation yourself: here’s an Octave script that implements the two
MM estimators discussed above: GMM/chi2mm.m

Note that when you run the script, the two estimators give different results. Each of the two
estimators is consistent.

• With two moment-parameter equations and only one parameter, we have overidentification,
which means that we have more information than is strictly necessary for consistent estimation
of the parameter.

• The idea behind GMM is to combine information from the two moment-parameter equations to
form a new estimator which will be more efficient, in general (proof of this below).

Sampling from t(θ0)

Here’s another example based upon the t-distribution. The density function of a t-distributed r.v. Yt
is

fYt(yt, θ0) = Γ [(θ0 + 1) /2]
(πθ0)1/2 Γ (θ0/2)

[
1 +

(
y2
t /θ

0)]−(θ0+1)/2

Given an iid sample of size n, one could estimate θ0 by maximizing the log-likelihood function

θ̂ ≡ arg max
Θ

lnLn(θ) =
n∑
t=1

ln fYt(yt, θ)

• This approach is attractive since ML estimators are asymptotically efficient. This is because
the ML estimator uses all of the available information (e.g., the distribution is fully specified up

http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/chi2mm.m


to a parameter). Recalling that a distribution is completely characterized by its moments, the
ML estimator is interpretable as a GMM estimator that uses all of the moments. The method
of moments estimator uses only K moments to estimate a K−dimensional parameter. Since
information is discarded, in general, by the MM estimator, efficiency is lost relative to the ML
estimator.

Example 41. (Method of moments). A t-distributed r.v. with density fYt(yt, θ0) has mean zero and
variance V (yt) = θ0/ (θ0 − 2) (for θ0 > 2).

We can define a moment condition as the difference between the theoretical variance and the
sample variance: m1(θ) = θ/ (θ − 2) − 1/n∑n

t=1 y
2
t . When evaluated at the true parameter value θ0,

both Eθ0 [m1(θ0)] = 0.
Choosing θ̂ to set m1(θ̂) ≡ 0 yields a MM estimator:

θ̂ = 2
1− n∑

i y
2
i

(14.1)

This estimator is based on only one moment of the distribution - it uses less information than the
ML estimator, so it is intuitively clear that the MM estimator will be inefficient relative to the ML
estimator.

Example 42. (Method of moments). An alternative MM estimator could be based upon the fourth
moment of the t-distribution. The fourth moment of a t-distributed r.v. is

µ4 ≡ E(y4
t ) = 3 (θ0)2

(θ0 − 2) (θ0 − 4) ,



provided that θ0 > 4. We can define a second moment condition

m2(θ) = 3 (θ)2

(θ − 2) (θ − 4) −
1
n

n∑
t=1

y4
t

A second, different MM estimator chooses θ̂ to set m2(θ̂) ≡ 0. If you solve this you’ll see that the
estimate is different from that in equation 14.1.

This estimator isn’t efficient either, since it uses only one moment. A GMM estimator would
use the two moment conditions together to estimate the single parameter. The GMM estimator
is overidentified, which leads to an estimator which is efficient relative to the just identified MM
estimators (more on efficiency later).

14.2 Definition of GMM estimator

For the purposes of this course, the following definition of the GMM estimator is sufficiently general:

Definition 43. The GMM estimator of the k -dimensional parameter vector θ0, θ̂ ≡ arg minΘ sn(θ) ≡
mn(θ)′Wnmn(θ), where mn(θ) = 1

n

∑n
t=1mt(θ) is a g-vector, g ≥ k, with Eθm(θ) = 0, and Wn converges

almost surely to a finite g × g symmetric positive definite matrix W∞.

What’s the reason for using GMM if MLE is asymptotically efficient?

• Robustness: GMM is based upon a limited set of moment conditions. For consistency, only
these moment conditions need to be correctly specified, whereas MLE in effect requires correct
specification of every conceivable moment condition. GMM is robust with respect to distributional



misspecification. The price for robustness is usually a loss of efficiency with respect to the MLE
estimator. Keep in mind that the true distribution is not known so if we erroneously specify a
distribution and estimate by MLE, the estimator will be inconsistent in general (not always).

• Feasibility: in some cases the MLE estimator is not available, because we are not able to deduce
or compute the likelihood function. More on this in the section on simulation-based estimation.
The GMM estimator may still be feasible even though MLE is not available.

Example 44. The Octave script GMM/chi2gmm.m implements GMM using the same χ2 data as was
using in Example 40, above. The two moment conditions, based on the sample mean and sample vari-
ance are combined. The weight matrix is an identity matrix, I2. In Octave, type ”help gmm_estimate”
to get more information on how the GMM estimation routine works.

14.3 Consistency

We simply assume that the assumptions of Theorem 29 hold, so the GMM estimator is strongly
consistent. The main requirement is that the moment conditions have mean zero at the true paraeter
value, θ0. This will be the case if our moment conditions are correctly specified. With this, it is clear
that the minimum of the limiting objective function occurs at the true parameter value. The only
assumption that warrants additional comments is that of identification. In Theorem 29, the third
assumption reads: (c) Identification: s∞(·) has a unique global maximum at θ0, i.e., s∞(θ0) > s∞(θ),
∀θ 6= θ0. Taking the case of a quadratic objective function sn(θ) = mn(θ)′Wnmn(θ), first consider
mn(θ).

• Applying a uniform law of large numbers, we get mn(θ) a.s.→ m∞(θ).

http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/chi2gmm.m


• Since Eθ0mn(θ0) = 0 by assumption, m∞(θ0) = 0.

• Since s∞(θ0) = m∞(θ0)′W∞m∞(θ0) = 0, in order for asymptotic identification, we need that
m∞(θ) 6= 0 for θ 6= θ0, for at least some element of the vector. There can be no other parameter
value that sets the moment conditions to zero (at least, in the limit). This and the assumption
that Wn

a.s.→ W∞, a finite positive g× g definite g× g matrix guarantee that θ0 is asymptotically
identified.

• Note that asymptotic identification does not rule out the possibility of lack of identification for
a given data set - there may be multiple minimizing solutions in finite samples.

Example 45. Increase n in the Octave script GMM/chi2gmm.m to see evidence of the consistency of
the GMM estimator.

14.4 Asymptotic normality

We also simply assume that the conditions of Theorem 31 hold, so we will have asymptotic normal-
ity. However, we do need to find the structure of the asymptotic variance-covariance matrix of the
estimator. From Theorem 31, we have

√
n
(
θ̂ − θ0

)
d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1]

where J∞(θ0) is the almost sure limit of ∂2

∂θ∂θ′sn(θ) when evaluated at θ0 and

I∞(θ0) = lim
n→∞V ar

√
n
∂

∂θ
sn(θ0).

http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/chi2gmm.m


We need to determine the form of these matrices given the objective function sn(θ) = mn(θ)′Wnmn(θ).
Now using the product rule from the introduction,

∂

∂θ
sn(θ) = 2

[
∂

∂θ
m
′

n (θ)
]
Wnmn (θ)

(this is analogous to ∂
∂ββ

′X ′Xβ = 2X ′Xβ which appears when computing the first order conditions
for the OLS estimator)

Define the k × g matrix
Dn(θ) ≡

∂

∂θ
m′n (θ) ,

so:
∂

∂θ
s(θ) = 2D(θ)Wm (θ) . (14.2)

(Note that sn(θ), Dn(θ), Wn and mn(θ) all depend on the sample size n, but it is omitted to unclutter
the notation).

To take second derivatives, let Di be the i− th row of D(θ). This is a 1×G row vector. Using the
product rule (25.1),

∂2

∂θ′∂θi
s(θ) = ∂

∂θ′
2Di(θ)Wm (θ)

= 2DiWD′ + 2m′W
[
∂

∂θ′
D′i

]

Note that the first term contains a D′, which appears due to ∂
∂θ′mn (θ). When evaluating the second

term:
2m(θ)′W

[
∂

∂θ′
D(θ)′i

]



(where the dependence of D upon θ is emphasized) at θ0, assume that ∂
∂θ′D(θ)′i satisfies a LLN (it is

an average), so that it converges almost surely to a finite limit. In this case, we have

2m(θ0)′W
[
∂

∂θ′
D(θ0)′i

]
a.s.→ 0,

because m(θ0) = op(1) and W a.s.→ W∞.
Stacking these results over the k rows of D, we get

lim ∂2

∂θ∂θ′
sn(θ0) = J∞(θ0) = 2D∞W∞D′∞, a.s.,

where we define limD = D∞, a.s., and limW = W∞, a.s. (we assume a LLN holds).
With regard to I∞(θ0), following equation 14.2, and noting that the scores have mean zero at θ0

(since Em(θ0) = 0 by assumption), we have

I∞(θ0) = lim
n→∞V ar

√
n
∂

∂θ
sn(θ0)

= lim
n→∞ E4nDWm(θ0)m(θ0)′WD′

= lim
n→∞ E4DW

{√
nm(θ0)

} {√
nm(θ0)′

}
WD′

Now, given that m(θ0) is an average of centered (mean-zero) quantities, it is reasonable to expect a
CLT to apply, after multiplication by

√
n. Assuming this,

√
nm(θ0) d→ N(0,Ω∞), (14.3)



where
Ω∞ = lim

n→∞ E
[
nm(θ0)m(θ0)′

]
.

Using this, and the last equation, we get

I∞(θ0) = 4D∞W∞Ω∞W∞D′∞

Using these results, the asymptotic normality theorem (31) gives us

√
n
(
θ̂ − θ0

)
d→ N

[
0, (D∞W∞D′∞)−1

D∞W∞Ω∞W∞D′∞ (D∞W∞D′∞)−1
]
,

the asymptotic distribution of the GMM estimator for arbitrary weighting matrix Wn. Note that for
J∞ to be positive definite, D∞ must have full row rank, ρ(D∞) = k. This is related to identification.
If the rows of mn(θ) were not linearly independent of one another, then neither Dn nor D∞ would
have full row rank. Identification plus two times differentiability of the objective function lead to J∞
being positive definite.

There are two things that affect the asymptotic variance:

• the choice of the moment conditions, mn(θ), which determines both D∞ and Ω∞

• the choice of the weight matrix Wn, which determines W∞

We would probably like to know how to choose both mn(θ) and Wn so that the asymptotic variance
is a small as possible.

Example 46. The Octave script GMM/AsymptoticNormalityGMM.m does a Monte Carlo of the
GMM estimator for the χ2 data. Histograms for 1000 replications of

√
n
(
θ̂ − θ0

)
are given in Figure

http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/AsymptoticNormalityGMM.m


Figure 14.2: Asymptotic Normality of GMM estimator, χ2 example
(a) n = 10 (b) n = 1000

14.2. On the left are results for n = 10, on the right are results for n = 1000. Note that the two
distributions are more or less centered at 0. The distribution for the small sample size is somewhat
asymmetric, which shows that the small sample distribution may be poorly approximated by the
asymptotic distribution. This has mostly disappeared for the larger sample size.

14.5 Choosing the weighting matrix

W is a weighting matrix, which determines the relative importance of violations of the individual
moment conditions. For example, if we are much more sure of the first moment condition, which is



based upon the variance, than of the second, which is based upon the fourth moment, we could set

W =
 a 0

0 b


with a much larger than b. In this case, errors in the second moment condition have less weight in the
objective function.

• Since moments are not independent, in general, we should expect that there be a correlation
between the moment conditions, so it may not be desirable to set the off-diagonal elements to 0.
W may be a random, data dependent matrix.

• We have already seen that the choice ofW will influence the asymptotic distribution of the GMM
estimator. Since the GMM estimator is already inefficient w.r.t. MLE, we might like to choose
the W matrix to make the GMM estimator efficient within the class of GMM estimators defined
by mn(θ).

• To provide a little intuition, consider the linear model y = x′β + ε, where ε ∼ N(0,Ω). That is,
he have heteroscedasticity and autocorrelation.

• Let P be the Cholesky factorization of Ω−1, e.g, P ′P = Ω−1.

• Then the model Py = PXβ + Pε satisfies the classical assumptions of homoscedasticity and
nonautocorrelation, because V (Pε) = PV (ε)P ′ = PΩP ′ = P (P ′P )−1P ′ = PP−1 (P ′)−1 P ′ = In.

(Note: we use (AB)−1 = B−1A−1 for A, B both nonsingular). This means that the transformed
model is efficient.



• The OLS estimator of the model Py = PXβ + Pε minimizes the objective function (y −
Xβ)′Ω−1(y −Xβ). Interpreting (y −Xβ) = ε(β) as moment conditions (note that they do have
zero expectation when evaluated at β0), the optimal weighting matrix is seen to be the inverse
of the covariance matrix of the moment conditions. This result carries over to GMM estimation.
(Note: this presentation of GLS is not a GMM estimator as defined above, because the number
of moment conditions here is equal to the sample size, n. Later we’ll see that GLS can be put
into the GMM framework defined above).

Theorem 47. If θ̂ is a GMM estimator that minimizes mn(θ)′Wnmn(θ), the asymptotic variance of θ̂
will be minimized by choosing Wn so that Wn

a.s→ W∞ = Ω−1
∞ , where Ω∞ = limn→∞ E [nm(θ0)m(θ0)′] .

Proof: For W∞ = Ω−1
∞ , the asymptotic variance

(D∞W∞D′∞)−1
D∞W∞Ω∞W∞D′∞ (D∞W∞D′∞)−1

simplifies to (D∞Ω−1
∞D

′
∞)−1

. Now, let A be the difference between the general form and the simplified
form:

A = (D∞W∞D′∞)−1
D∞W∞Ω∞W∞D′∞ (D∞W∞D′∞)−1 −

(
D∞Ω−1

∞D
′
∞
)−1

Set B = (D∞W∞D′∞)−1D∞W∞ − (D∞Ω−1
∞D

′
∞)−1

D∞Ω−1
∞ . One can show that A = BΩ∞B

′. This is a
quadratic form in a p.d. matrix, so it is p.s.d., which concludes the proof.

The result

√
n
(
θ̂ − θ0

)
d→ N

[
0,
(
D∞Ω−1

∞D
′
∞
)−1] (14.4)



allows us to treat

θ̂ ≈ N

θ0,
(D∞Ω−1

∞D
′
∞)−1

n

 ,
where the ≈ means ”approximately distributed as.” To operationalize this we need estimators of D∞
and Ω∞.

• The obvious estimator of D̂∞ is simply ∂
∂θm

′
n

(
θ̂
)
, which is consistent by the consistency of θ̂,

assuming that ∂
∂θm

′
n is continuous in θ. Stochastic equicontinuity results can give us this result

even if ∂
∂θm

′
n is not continuous.

Example 48. To see the effect of using an efficient weight matrix, consider the Octave script GM-
M/EfficientGMM.m. This modifies the previous Monte Carlo for the χ2 data. This new Monte Carlo
computes the GMM estimator in two ways:
1) based on an identity weight matrix
2) using an estimated optimal weight matrix. The estimated efficient weight matrix is computed as
the inverse of the estimated covariance of the moment conditions, using the inefficient estimator of the
first step. See the next section for more on how to do this.
Figure 14.3 shows the results, plotting histograms for 1000 replications of

√
n
(
θ̂ − θ0

)
. Note that the

use of the estimated efficient weight matrix leads to much better results in this case. This is a simple
case where it is possible to get a good estimate of the efficient weight matrix. This is not always so.
See the next section.

14.6 Estimation of the variance-covariance matrix

(See Hamilton Ch. 10, pp. 261-2 and 280-84)∗.

http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/EfficientGMM.m
http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/EfficientGMM.m


Figure 14.3: Inefficient and Efficient GMM estimators, χ2 data
(a) inefficient (b) efficient



In the case that we wish to use the optimal weighting matrix, we need an estimate of Ω∞, the lim-
iting variance-covariance matrix of

√
nmn(θ0). While one could think of estimating Ω∞ parametrically

(along the lines of feasible GLE) we in general have little information upon which to base a parametric
specification, so nonparametric estimation is normally used. In general, we expect that:

• mt will be autocorrelated (Γts = E(mtm
′
t−s) 6= 0). Note that this autocovariance will not depend

on t if the moment conditions are covariance stationary.

• contemporaneously correlated, since the individual moment conditions will not in general be
independent of one another (E(mitmjt) 6= 0).

• and have different variances (E(m2
it) = σ2

it ).

Since we need to estimate so many components if we are to take the parametric approach, it is unlikely
that we would arrive at a correct parametric specification. For this reason, research has focused on
consistent nonparametric estimators of Ω∞.

Henceforth we assume that mt is covariance stationary (the covariance between mt and mt−s does
not depend on t). Define the v − th autocovariance of the moment conditions Γv = E(mtm

′
t−s).

Exercise 49. Show that E(mtm
′
t+s) = Γ′v.

Recall that mt and m are functions of θ, so for now assume that we have some consistent estimator



of θ0, so that m̂t = mt(θ̂). Now

Ωn = E
[
nm(θ0)m(θ0)′

]
= E

n
1/n

n∑
t=1

mt

1/n
n∑
t=1

m′t


= E

1/n
 n∑
t=1

mt

 n∑
t=1

m′t


= Γ0 + n− 1

n
(Γ1 + Γ′1) + n− 2

n
(Γ2 + Γ′2) · · ·+

1
n

(Γn−1 + Γ′n−1)

A natural, consistent estimator of Γv is

Γ̂v = 1/n
n∑

t=v+1
m̂tm̂

′
t−v.

(you might use n − v in the denominator instead). So, a natural, but inconsistent, estimator of Ω∞
would be

Ω̂ = Γ̂0 + n− 1
n

(
Γ̂1 + Γ̂′1

)
+ n− 2

n

(
Γ̂2 + Γ̂′2

)
+ · · ·+

(
Γ̂n−1 + Γ̂′n−1

)

= Γ̂0 +
n−1∑
v=1

n− v
n

(
Γ̂v + Γ̂′v

)
.

This estimator is inconsistent in general, since the number of parameters to estimate is more than
the number of observations, and increases more rapidly than n, so information does not build up as
n→∞.

On the other hand, supposing that Γv tends to zero sufficiently rapidly as v tends to∞, a modified



estimator
Ω̂ = Γ̂0 +

q(n)∑
v=1

(
Γ̂v + Γ̂′v

)
,

where q(n) p→∞ as n→∞ will be consistent, provided q(n) grows sufficiently slowly. The term n−v
n

can be dropped because q(n) must be op(n). This allows information to accumulate at a rate that
satisfies a LLN. A disadvantage of this estimator is that it may not be positive definite. This could
cause one to calculate a negative χ2 statistic, for example!

• Note: the formula for Ω̂ requires an estimate of m(θ0), which in turn requires an estimate of θ,
which is based upon an estimate of Ω! The solution to this circularity is to set the weighting
matrix W arbitrarily (for example to an identity matrix), obtain a first consistent but inefficient
estimate of θ0, then use this estimate to form Ω̂, then re-estimate θ0. The process can be iterated
until neither Ω̂ nor θ̂ change appreciably between iterations.

Newey-West covariance estimator

The Newey-West estimator (Econometrica, 1987) solves the problem of possible nonpositive definite-
ness of the above estimator. Their estimator is

Ω̂ = Γ̂0 +
q(n)∑
v=1

[
1− v

q + 1

] (
Γ̂v + Γ̂′v

)
.

This estimator is p.d. by construction. The condition for consistency is that n−1/4q → 0. Note that
this is a very slow rate of growth for q. This estimator is nonparametric - we’ve placed no parametric
restrictions on the form of Ω. It is an example of a kernel estimator.



In a more recent paper, Newey and West (Review of Economic Studies, 1994) use pre-whitening
before applying the kernel estimator. The idea is to fit a VAR model to the moment conditions. It is
expected that the residuals of the VAR model will be more nearly white noise, so that the Newey-West
covariance estimator might perform better with short lag lengths..

The VAR model is
m̂t = Θ1m̂t−1 + · · ·+ Θpm̂t−p + ut

This is estimated, giving the residuals ût. Then the Newey-West covariance estimator is applied to
these pre-whitened residuals, and the covariance Ω is estimated combining the fitted VAR

̂̂mt = Θ̂1m̂t−1 + · · ·+ Θ̂pm̂t−p

with the kernel estimate of the covariance of the ut. See Newey-West for details.

• I have a program that does this if you’re interested.

14.7 Estimation using conditional moments

So far, the moment conditions have been presented as unconditional expectations. One common way
of defining unconditional moment conditions is based upon conditional moment conditions.

Suppose that a random variable Y has zero expectation conditional on the random variable X

EY |XY =
∫
Y f(Y |X)dY = 0

Then the unconditional expectation of the product of Y and a function g(X) of X is also zero. The



unconditional expectation is

EY g(X) =
∫
X

(∫
Y
Y g(X)f(Y,X)dY

)
dX.

This can be factored into a conditional expectation and an expectation w.r.t. the marginal density of
X :

EY g(X) =
∫
X

(∫
Y
Y g(X)f(Y |X)dY

)
f(X)dX.

Since g(X) doesn’t depend on Y it can be pulled out of the integral

EY g(X) =
∫
X

(∫
Y
Y f(Y |X)dY

)
g(X)f(X)dX.

But the term in parentheses on the rhs is zero by assumption, so

EY g(X) = 0

as claimed.
This is important econometrically, since models often imply restrictions on conditional moments.

Suppose a model tells us that the function K(yt, xt) has expectation, conditional on the information
set It, equal to k(xt, θ),

EθK(yt, xt)|It = k(xt, θ).

• For example, in the context of the classical linear model yt = x′tβ + εt, we can set K(yt, xt) = yt

so that k(xt, θ) = x′tβ.



With this, the error function
εt(θ) = K(yt, xt)− k(xt, θ)

has conditional expectation equal to zero

Eθεt(θ)|It = 0.

This is a scalar moment condition, which isn’t sufficient to identify a K -dimensional parameter θ
(K > 1). However, the above result allows us to form various unconditional expectations

mt(θ) = Z(wt)εt(θ)

where Z(wt) is a g × 1-vector valued function of wt and wt is a set of variables drawn from the
information set It. The Z(wt) are instrumental variables. We now have g moment conditions, so as
long as g > K the necessary condition for identification holds.

One can form the n× g matrix

Zn =



Z1(w1) Z2(w1) · · · Zg(w1)
Z1(w2) Z2(w2) Zg(w2)
... ...
Z1(wn) Z2(wn) · · · Zg(wn)



=



Z ′1
Z ′2

Z ′n





With this we can form the g moment conditions

mn(θ) = 1
n
Z ′n



ε1(θ)
ε2(θ)
...
εn(θ)



Define the vector of error functions

hn(θ) =



ε1(θ)
ε2(θ)
...
εn(θ)


With this, we can write

mn(θ) = 1
n
Z ′nhn(θ)

= 1
n

n∑
t=1

Ztht(θ)

= 1
n

n∑
t=1

mt(θ)

where Z(t,·) is the tth row of Zn. This fits the previous treatment.



14.8 A specification test

The first order conditions for minimization, using the an estimate of the optimal weighting matrix,
are

∂

∂θ
s(θ̂) = 2

[
∂

∂θ
m
′

n

(
θ̂
)]

Ω̂−1mn

(
θ̂
)
≡ 0

or

D(θ̂)Ω̂−1mn(θ̂) ≡ 0

Consider a Taylor expansion of m(θ̂) about the true parameter value:

m(θ̂) = mn(θ0) +D′n(θ∗)
(
θ̂ − θ0

)
(14.5)

where θ∗ is between θ̂ and θ0. Multiplying by D(θ̂)Ω̂−1 we obtain

D(θ̂)Ω̂−1m(θ̂) = D(θ̂)Ω̂−1mn(θ0) +D(θ̂)Ω̂−1D(θ∗)′
(
θ̂ − θ0

)

The lhs is zero, so
D(θ̂)Ω̂−1mn(θ0) = −

[
D(θ̂)Ω̂−1D(θ∗)′

] (
θ̂ − θ0

)
or

(
θ̂ − θ0

)
= −

(
D(θ̂)Ω̂−1D(θ∗)′

)−1
D(θ̂)Ω̂−1mn(θ0)



With this, and taking into account the original expansion (equation 14.5), we get

√
nm(θ̂) =

√
nmn(θ0)−

√
nD′n(θ∗)

(
D(θ̂)Ω̂−1D(θ∗)′

)−1
D(θ̂)Ω̂−1mn(θ0).

With some factoring, this last can be written as

√
nm(θ̂) =

(
Ω̂1/2 −D′n(θ∗)

(
D(θ̂)Ω̂−1D(θ∗)′

)−1
D(θ̂)Ω̂−1/2

) (√
nΩ̂−1/2mn(θ0)

)

(verify it by multiplying out the last expression. Also, a note: the matrix square root of a matrix A is
any matrix A1/2 such that A = A1/2A1/2. Any positive definite matrix has an invertible matrix square
root.)

Next, multiply by Ω̂−1/2 to get

√
nΩ̂−1/2m(θ̂) =

(
Ig − Ω̂−1/2D′n(θ∗)

(
D(θ̂)Ω̂−1D(θ∗)′

)−1
D(θ̂)Ω̂−1/2

) (√
nΩ̂−1/2mn(θ0)

)
≡ PX

Now, from 14.3 we have
X ≡

√
nΩ̂−1/2mn(θ0) d→ N(0, Ig)

• the big matrix P = Ig − Ω̂−1/2D′n(θ∗)
(
D(θ̂)Ω̂−1D(θ∗)′

)−1
D(θ̂)Ω̂−1/2 converges in probability to

P∞ = Ig − Ω−1/2
∞ D′∞ (D∞Ω−1

∞D
′
∞)−1

D∞Ω−1/2
∞ .

• One can easily verify that P∞ is idempotent and has rank g − K, (recall that the rank of an
idempotent matrix is equal to its trace).

• We know as a basic result from statistics that X ′PX d→ χ2(d), because it is a quadratic form of



standard normal variables, weighted by an idempotent matrix.

• So, a quadratic form on the r.h.s. has an asymptotic chi-square distribution. The quadratic form
made using the l.h.s. must also have the same distribution, so we finally get

(√
nΩ̂−1/2m(θ̂)

)′ (√
nΩ̂−1/2m(θ̂)

)
= nm(θ̂)′Ω̂−1m(θ̂) d→ χ2(g −K)

or
n · sn(θ̂) d→ χ2(g −K)

supposing the model is correctly specified.

This is a convenient test since we just multiply the optimized value of the objective function by n, and
compare with a χ2(g − K) critical value. The test is a general test of whether or not the moments
used to estimate are correctly specified.

This won’t work when the estimator is just identified. The f.o.c. are

Dθsn(θ) = DΩ̂−1m(θ̂) ≡ 0.

But with exact identification, bothD and Ω̂ are square and invertible (at least asymptotically, assuming
that asymptotic normality hold), so

m(θ̂) ≡ 0.

So the moment conditions are zero regardless of the weighting matrix used. As such, we might as well
use an identity matrix and save trouble. Also sn(θ̂) = 0, so the test breaks down.

A note: this sort of test often over-rejects in finite samples. One should be cautious in rejecting a



model when this test rejects.
This test goes by several names: Hansen test, Sargan test, Hansen-Sargan test, J test. I call it the

GMM criterion test. An old name for GMM estimation is ”minimum chi-square” estimation. This
makes sense: the criterion function at the estimate (which makes the criterion as small as possible),
scaled by n, has a χ2 distribution.

14.9 Example: Generalized instrumental variables estimator

The IV estimator may appear a bit unusual at first, but it will grow on you over time. We have in
fact already seen the IV estimator above, in the discussion of conditional moments. That presentation
allows the function k(xt, θ) to be nonlinear. Let’s look in more detail at the commonly encountered
special case of a linear model with iid errors, but with correlation between regressors and errors:

yt = x′tθ + εt

E(x′tεt) 6= 0

• Let’s assume, just to keep things simple, that the errors are iid

• The model in matrix form is y = Xθ + ε



Let K = dim(xt). Consider some vector zt of dimension G×1, where G ≥ K. Assume that E(ztεt) = 0.
The variables zt are instrumental variables. Consider the moment conditions

mt(θ) = ztεt

= zt (yt − x′tθ)

We can arrange the instruments in the n×G matrix

Z =



z′1
z′2
...
z′n



The average moment conditions are

mn(θ) = 1
n
Z ′ε

= 1
n

(Z ′y − Z ′Xθ)

The generalized instrumental variables estimator is just the GMM estimator based upon these moment
conditions. When G = K, we have exact identification, and it is referred to as the instrumental
variables estimator.

The first order conditions for GMM are DnWnmn(θ̂) = 0, which imply that

DnWnZ
′Xθ̂IV = DnWnZ

′y



Exercise 50. Verify that Dn = −X ′Z
n . Remember that (assuming differentiability) identification of

the GMM estimator requires that this matrix must converge to a matrix with full row rank. Can
just any variable that is uncorrelated with the error be used as an instrument, or is there some other
condition?

Exercise 51. Verify that the efficient weight matrix is Wn =
(
Z ′Z
n

)−1 (up to a constant).

If we accept what is stated in these two exercises, then

X ′Z

n

Z ′Z
n

−1

Z ′Xθ̂IV = X ′Z

n

Z ′Z
n

−1

Z ′y

Noting that the powers of n cancel, we get

X ′Z (Z ′Z)−1
Z ′Xθ̂IV = X ′Z (Z ′Z)−1

Z ′y

or
θ̂IV =

(
X ′Z (Z ′Z)−1

Z ′X
)−1

X ′Z (Z ′Z)−1
Z ′y (14.6)

Another way of arriving to the same point is to define the projection matrix PZ

PZ = Z(Z ′Z)−1Z ′



Anything that is projected onto the space spanned by Z will be uncorrelated with ε, by the definition
of Z. Transforming the model with this projection matrix we get

PZy = PZXβ + PZε

or
y∗ = X∗θ + ε∗

Now we have that ε∗ and X∗ are uncorrelated, since this is simply

E(X∗′ε∗) = E(X ′P ′ZPZε)
= E(X ′PZε)

and
PZX = Z(Z ′Z)−1Z ′X

is the fitted value from a regression of X on Z. This is a linear combination of the columns of Z, so it
must be uncorrelated with ε. This implies that applying OLS to the model

y∗ = X∗θ + ε∗

will lead to a consistent estimator, given a few more assumptions.

Exercise 52. Verify algebraically that applying OLS to the above model gives the IV estimator of
equation 14.6.

With the definition of PZ , we can write



θ̂IV = (X ′PZX)−1X ′PZy

from which we obtain

θ̂IV = (X ′PZX)−1X ′PZ(Xθ0 + ε)
= θ0 + (X ′PZX)−1X ′PZε

so

θ̂IV − θ0 = (X ′PZX)−1X ′PZε

=
(
X ′Z(Z ′Z)−1Z ′X

)−1
X ′Z(Z ′Z)−1Z ′ε

Now we can introduce factors of n to get

θ̂IV − θ0 =
X ′Z

n

Z ′Z
n

−1Z ′X
n

−1 X ′Z
n

Z ′Z
n

−1 Z ′ε
n


Assuming that each of the terms with a n in the denominator satisfies a LLN, so that

• Z ′Z
n

p→ QZZ , a finite pd matrix

• X ′Z
n

p→ QXZ , a finite matrix with rank K (= cols(X) ). That is to say, the instruments must be
correlated with the regressors. More precisely, each regressor must be correlated with at least
one instrument. Otherwise, the row of QXZ corresponding to that regressor would be all zeros,
and thus the rank of the matrix would be less than K.



• Z ′ε
n

p→ 0

then the plim of the rhs is zero. This last term has plim 0 because we assume that Z and ε are
uncorrelated, e.g.,

E(z′tεt) = 0,

Given these assumptions, the IV estimator is consistent

θ̂IV
p→ θ0.

Furthermore, scaling by √n, we have

√
n
(
θ̂IV − θ0

)
=

X ′Z

n

Z ′Z
n

−1 Z ′X
n



−1 X ′Z

n

Z ′Z
n

−1 Z ′ε√
n



Assuming that the far right term satifies a CLT, so that

• Z ′ε√
n

d→ N(0, QZZσ
2)

then we get
√
n
(
θ̂IV − θ0

)
d→ N

(
0, (QXZQ

−1
ZZQ

′
XZ)−1σ2)

The estimators for QXZ and QZZ are the obvious ones. An estimator for σ2 is

σ̂2
IV = 1

n

(
y −Xθ̂IV

)′ (
y −Xθ̂IV

)
.

This estimator is consistent following the proof of consistency of the OLS estimator of σ2, when the
classical assumptions hold.



The formula used to estimate the variance of θ̂IV is

V̂ (θ̂IV ) =
(
(X ′Z) (Z ′Z)−1 (Z ′X)

)−1
σ̂2
IV

The GIV estimator is

1. Consistent

2. Asymptotically normally distributed

3. Biased in general, because even though E(X ′PZε) = 0, E(X ′PZX)−1X ′PZε may not be zero,
because (X ′PZX)−1 and X ′PZε are not independent.

An important point is that the asymptotic distribution of β̂IV depends upon QXZ and QZZ , and these
depend upon the choice of Z. The choice of instruments influences the efficiency of the estimator. This
point was made above, when optimal instruments were discussed.

• When we have two sets of instruments, Z1 and Z2 such that Z1 ⊂ Z2, then the IV estimator using
Z2 is at least as efficiently asymptotically as the estimator that used Z1. More instruments leads
to more asymptotically efficient estimation, in general. The same holds for GMM in general:
adding moment conditions cannot cause the asymptotic variance to become larger.

• The penalty for indiscriminant use of instruments is that the small sample bias of the IV estimator
rises as the number of instruments increases. The reason for this is that PZX becomes closer
and closer to X itself as the number of instruments increases.

Exercise 53. How would one adapt the GIV estimator presented here to deal with the case of het-
eroscedastic and/or autocorrelated errors?



Example 54. Recall Example 19 which deals with a dynamic model with measurement error. The
model is

y∗t = α + ρy∗t−1 + βxt + εt

yt = y∗t + υt

where εt and υt are independent Gaussian white noise errors. Suppose that y∗t is not observed, and
instead we observe yt. If we estimate the equation

yt = α + ρyt−1 + βxt + νt

by OLS, we have seen in Example 19 that the estimator is biased an inconsistent. What about using
the GIV estimator? Consider using as instruments Z = [1xt xt−1 xt−2]. The lags of xt are correlated
with yt−1 as long as ρ and β are different from zero, and by assumption xt and its lags are uncorrelated
with εt and υt (and thus they’re also uncorrelated with νt). Thus, these are legitimate instruments.
As we have 4 instruments and 3 parameters, this is an overidentified situation. The Octave script
GMM/MeasurementErrorIV.m does a Monte Carlo study using 1000 replications, with a sample size
of 100. The results are comparable with those in Example 19. Using the GIV estimator, descriptive
statistics for 1000 replications are

octave:3> MeasurementErrorIV
rm: cannot remove ‘meas_error.out’: No such file or directory

mean st. dev. min max

http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/MeasurementErrorIV.m


0.000 0.241 -1.250 1.541
-0.016 0.149 -0.868 0.827
-0.001 0.177 -0.757 0.876

octave:4>

If you compare these with the results for the OLS estimator, you will see that the bias of the GIV
estimator is much less for estimation of ρ. If you increase the sample size, you will see that the GIV
estimator is consistent, but that the OLS estimator is not.

A histogram for ρ̂ − ρ is in Figure 14.4. You can compare with the similar figure for the OLS
estimator, Figure 7.5. As mentioned above, when the GMM estimator is overidentified and we use a
consistent estimate of the efficient weight matrix, we have the criterion-based specification test n ·sn(θ̂)
available. The Octave script GMM/SpecTest.m does a Monte Carlo study of this test, for the dynamic
model with measurement error, and shows that it over-rejects a correctly specified model in this case.
For example, if the significance level is set to 10%, the test rejects about 16% of the time. This is a
common result for this test.

2SLS

In the general discussion of GIV above, we haven’t considered from where we get the instruments. Two
stage least squares is an example of a particular GIV estimator, where the instruments are obtained
in a particular way. Consider a single equation from a system of simultaneous equations. Refer back

http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/SpecTest.m


Figure 14.4: GIV estimation results for ρ̂− ρ, dynamic model with measurement error



to equation 10.3 for context. The model is

y = Y1γ1 +X1β1 + ε

= Zδ + ε

where Z =
[
Y1 X1

]
and δ =

[
γ′1 β′1

]′
and Y1 are current period endogenous variables that are

correlated with the error term. X1 are exogenous and predetermined variables that are assumed not
to be correlated with the error term. Let X be all of the weakly exogenous variables (please refer back
for context). The problem, recall, is that the variables in Y1 are correlated with ε.

• Define Ẑ =
[
Ŷ1 X1

]
as the vector of predictions of Z when regressed upon X:

Ẑ = X (X ′X)−1
X ′Z

Remember that X are all of the exogenous variables from all equations. The fitted values of
a regression of X1 on X are just X1, because X contains X1. So, Ŷ1 are the reduced form
predictions of Y1.

• Since Ẑ is a linear combination of the weakly exogenous variables X, it must be uncorrelated
with ε. This suggests the K-dimensional moment condition mt(δ) = ẑt (yt − z′tδ) and so

m(δ) = 1/n
∑
t

ẑt (yt − z′tδ) .

• Since we haveK parameters andK moment conditions, the GMM estimator will setm identically



equal to zero, regardless of W, so we have

δ̂ =
∑

t
ẑtz′t

−1 ∑
t

(ẑtyt) =
(
Ẑ′Z

)−1 Ẑ′y

This is the standard formula for 2SLS. We use the exogenous variables and the reduced form predictions
of the endogenous variables as instruments, and apply IV estimation. See Hamilton pp. 420-21 for the
varcov formula (which is the standard formula for 2SLS), and for how to deal with εt heterogeneous
and dependent (basically, just use the Newey-West or some other consistent estimator of Ω, and apply
the usual formula).

• Note that autocorrelation of εt causes lagged endogenous variables to loose their status as legit-
imate instruments. Some caution is warranted if this suspicion arises.

• An example of 2SLS estimation is given in Section 10.10.

• We can also estimate this same model using plain GMM estimation, this is done in Simeq/Kle-
inGMM.m. This script shows the use of the Newey-West covariance estimator.

http://pareto.uab.es/mcreel/Econometrics/Examples/Simeq/KleinGMM.m
http://pareto.uab.es/mcreel/Econometrics/Examples/Simeq/KleinGMM.m


14.10 Nonlinear simultaneous equations

GMM provides a convenient way to estimate nonlinear systems of simultaneous equations. We have a
system of equations of the form

y1t = f1(zt, θ0
1) + ε1t

y2t = f2(zt, θ0
2) + ε2t

...
yGt = fG(zt, θ0

G) + εGt,

or in compact notation
yt = f(zt, θ0) + εt,

where f(·) is a G -vector valued function, and θ0 = (θ0′
1 , θ

0′
2 , · · · , θ0′

G)′. We assume that zt contains the
current period endogenous variables, so we have a simultaneity problem.

We need to find an Ai × 1 vector of instruments xit, for each equation, that are uncorrelated with
εit. Typical instruments would be low order monomials in the exogenous variables in zt, with their
lagged values. Then we can define the

(∑G
i=1Ai

)
× 1 orthogonality conditions

mt(θ) =



(y1t − f1(zt, θ1)) x1t

(y2t − f2(zt, θ2)) x2t
...

(yGt − fG(zt, θG)) xGt


.

• once we have gotten this far, we can just proceed with GMM estimation, one-step, two-step,



CUE, or whatever.

• A note on identification: selection of instruments that ensure identification is a non-trivial prob-
lem. Identification in nonlinear models is not as easy to check as it is with linear models, where
counting zero restrictions works.

• A note on efficiency: the selected set of instruments has important effects on the efficiency of
estimation. There are some papers that study this problem, but the results are fairly complicated
and difficult to implement. I think it’s safe to say that the great majority of applied work does
not attempt to use optimal instruments.

14.11 Maximum likelihood

In the introduction we argued that ML will in general be more efficient than GMM since ML implicitly
uses all of the moments of the distribution while GMM uses a limited number of moments. Actually, a
distribution with P parameters can be uniquely characterized by P moment conditions. However, some
sets of P moment conditions may contain more information than others, since the moment conditions
could be highly correlated. A GMM estimator that chose an optimal set of P moment conditions
would be fully efficient. Here we’ll see that the optimal moment conditions are simply the scores of
the ML estimator.

Let yt be a G -vector of variables, and let Yt = (y′1, y′2, ..., y′t)′. Then at time t, Yt−1 has been observed
(refer to it as the information set, since we assume the conditioning variables have been selected to
take advantage of all useful information). The likelihood function is the joint density of the sample:

L(θ) = f(y1, y2, ..., yn, θ)



which can be factored as
L(θ) = f(yn|Yn−1, θ) · f(Yn−1, θ)

and we can repeat this to get

L(θ) = f(yn|Yn−1, θ) · f(yn−1|Yn−2, θ) · ... · f(y1).

The log-likelihood function is therefore

lnL(θ) =
n∑
t=1

ln f(yt|Yt−1, θ).

Define
mt(Yt, θ) ≡ Dθ ln f(yt|Yt−1, θ)

as the score of the tth observation. It can be shown that, under the regularity conditions, that the
scores have conditional mean zero when evaluated at θ0 (see 13.2):

E
(
mt(Yt, θ0)|Yt−1

)
= 0

so one could interpret these as moment conditions to use to define a just-identified GMM estimator (
if there are K parameters there are K score equations). The GMM estimator sets

1/n
n∑
t=1

mt(Yt, θ̂) = 1/n
n∑
t=1

Dθ ln f(yt|Yt−1, θ̂) = 0,

which are precisely the first order conditions of MLE. Therefore, MLE can be interpreted as a GMM
estimator. The GMM varcov formula is V∞ = (D∞Ω−1D′∞)−1.



Consistent estimates of variance components are as follows

• D∞
D̂∞ = ∂

∂θ′
m(Yt, θ̂) = 1/n

n∑
t=1

D2
θ ln f(yt|Yt−1, θ̂)

• Ω

It is important to note that mt and mt−s, s > 0 are both conditionally and unconditionally
uncorrelated. Conditional uncorrelation follows from the fact that mt−s is a function of Yt−s,
which is in the information set at time t. Unconditional uncorrelation follows from the fact
that conditional uncorrelation hold regardless of the realization of Yt−1, so marginalizing with
respect to Yt−1 preserves uncorrelation (see the section on ML estimation, above). The fact that
the scores are serially uncorrelated implies that Ω can be estimated by the estimator of the 0th

autocovariance of the moment conditions:

Ω̂ = 1/n
n∑
t=1

mt(Yt, θ̂)mt(Yt, θ̂)′ = 1/n
n∑
t=1

[
Dθ ln f(yt|Yt−1, θ̂)

] [
Dθ ln f(yt|Yt−1, θ̂)

]′

There is no need for a Newey-West style estimator, the heteroscedastic-consistent estimator of
White is sufficient. Also, the fact that the scores of ML are uncorrelated suggests a means of
testing the correct specification of the model: see if the fitted scores (mt(θ̂) show evidence of
serial correlation. If they do, the correctness of the specification of the model is subject to doubt.



14.12 Example: OLS as a GMM estimator - the Nerlove
model again

The simple Nerlove model can be estimated using GMM. The Octave script NerloveGMM.m estimates
the model by GMM and by OLS. It also illustrates that the weight matrix does not matter when the
moments just identify the parameter. You are encouraged to examine the script and run it.

14.13 Example: The MEPS data

The MEPS data on health care usage discussed in section 11.4 estimated a Poisson model by ”maximum
likelihood” (probably misspecified). Perhaps the same latent factors (e.g., chronic illness) that induce
one to make doctor visits also influence the decision of whether or not to purchase insurance. If this
is the case, the PRIV variable could well be endogenous, in which case, the Poisson ”ML” estimator
would be inconsistent, even if the conditional mean were correctly specified. The Octave script meps.m
estimates the parameters of the model presented in equation 11.1, using Poisson ”ML” (better thought
of as quasi-ML), and IV estimation1. Both estimation methods are implemented using a GMM form.
Running that script gives the output

OBDV

******************************************************
IV

1The validity of the instruments used may be debatable, but real data sets often don’t contain ideal instruments.

http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/NerloveGMM.m
http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/MEPS/meps.m


GMM Estimation Results
BFGS convergence: Normal convergence

Objective function value: 0.004273
Observations: 4564
No moment covariance supplied, assuming efficient weight matrix

Value df p-value
X^2 test 19.502 3.000 0.000

estimate st. err t-stat p-value
constant -0.441 0.213 -2.072 0.038
pub. ins. -0.127 0.149 -0.851 0.395
priv. ins. -1.429 0.254 -5.624 0.000
sex 0.537 0.053 10.133 0.000
age 0.031 0.002 13.431 0.000
edu 0.072 0.011 6.535 0.000
inc 0.000 0.000 4.500 0.000
******************************************************

******************************************************



Poisson QML

GMM Estimation Results
BFGS convergence: Normal convergence

Objective function value: 0.000000
Observations: 4564
No moment covariance supplied, assuming efficient weight matrix

Exactly identified, no spec. test

estimate st. err t-stat p-value
constant -0.791 0.149 -5.289 0.000
pub. ins. 0.848 0.076 11.092 0.000
priv. ins. 0.294 0.071 4.136 0.000
sex 0.487 0.055 8.796 0.000
age 0.024 0.002 11.469 0.000
edu 0.029 0.010 3.060 0.002
inc -0.000 0.000 -0.978 0.328
******************************************************

Note how the Poisson QML results, estimated here using a GMM routine, are the same as were
obtained using the ML estimation routine (see subsection 11.4). This is an example of how (Q)ML may



be represented as a GMM estimator. Also note that the IV and QML results are considerably different.
Treating PRIV as potentially endogenous causes the sign of its coefficient to change. Perhaps it is
logical that people who own private insurance make fewer visits, if they have to make a co-payment.
Note that income becomes positive and significant when PRIV is treated as endogenous.

Perhaps the difference in the results depending upon whether or not PRIV is treated as endogenous
can suggest a method for testing exogeneity....

14.14 Example: The Hausman Test

This section discusses the Hausman test, which was originally presented in Hausman, J.A. (1978),
Specification tests in econometrics, Econometrica, 46, 1251-71.

Consider the simple linear regression model yt = x′tβ+ εt. We assume that the functional form and
the choice of regressors is correct, but that the some of the regressors may be correlated with the error
term, which as you know will produce inconsistency of β̂. For example, this will be a problem if

• if some regressors are endogeneous

• some regressors are measured with error

• some relevant regressors are omitted (equivalent to imposing false restrictions)

• lagged values of the dependent variable are used as regressors and εt is autocorrelated.

To illustrate, the Octave program OLSvsIV.m performs a Monte Carlo experiment where errors are
correlated with regressors, and estimation is by OLS and IV. The true value of the slope coefficient
used to generate the data is β = 2. Figure 14.5 shows that the OLS estimator is quite biased, while

http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/Hausman/OLSvsIV.m


Figure 14.5: OLS
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Figure 14.6 shows that the IV estimator is on average much closer to the true value. If you play with
the program, increasing the sample size, you can see evidence that the OLS estimator is asymptotically
biased, while the IV estimator is consistent. You can also play with the covariances of the instrument
and regressor, and the covariance of the regressor and the error.

We have seen that inconsistent and the consistent estimators converge to different probability
limits. This is the idea behind the Hausman test - a pair of consistent estimators converge to the same
probability limit, while if one is consistent and the other is not they converge to different limits. If we
accept that one is consistent (e.g., the IV estimator), but we are doubting if the other is consistent
(e.g., the OLS estimator), we might try to check if the difference between the estimators is significantly



Figure 14.6: IV
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different from zero.

• If we’re doubting about the consistency of OLS (or QML, etc.), why should we be interested
in testing - why not just use the IV estimator? Because the OLS estimator is more efficient
when the regressors are exogenous and the other classical assumptions (including normality of
the errors) hold.

• Play with the above script to convince yourself of this point: make exogeneity hold, and compare
the variances of OLS and IV

• When we have a more efficient estimator that relies on stronger assumptions (such as exogeneity)
than the IV estimator, we might prefer to use it, unless we have evidence that the assumptions
are false.

So, let’s consider the covariance between the MLE estimator θ̂ (or any other fully efficient estimator)
and some other CAN estimator, say θ̃. Now, let’s recall some results from MLE. Equation 13.4 is:

√
n
(
θ̂ − θ0

)
a.s.→ −J∞(θ0)−1√ng(θ0).

Equation 13.8 is
J∞(θ) = −I∞(θ).

Combining these two equations, we get

√
n
(
θ̂ − θ0

)
a.s.→ I∞(θ0)−1√ng(θ0).

Also, equation 13.11 tells us that the asymptotic covariance between any CAN estimator and the
MLE score vector is



V∞


√
n
(
θ̃ − θ

)
√
ng(θ)

 =
 V∞(θ̃) IK

IK I∞(θ)

 .
Now, consider IK 0K

0K I∞(θ)−1



√
n
(
θ̃ − θ

)
√
ng(θ)

 a.s.→

√
n
(
θ̃ − θ

)
√
n
(
θ̂ − θ

)
 .

The asymptotic covariance of this is

V∞


√
n
(
θ̃ − θ

)
√
n
(
θ̂ − θ

)
 =

IK 0K
0K I∞(θ)−1


 V∞(θ̃) IK

IK I∞(θ)


IK 0K
0K I∞(θ)−1



=
 V∞(θ̃) I∞(θ)−1

I∞(θ)−1 I∞(θ)−1

 ,

which, for clarity in what follows, we might write as (note to self for lectures: the 2,2 element has
changed)

V∞


√
n
(
θ̃ − θ

)
√
n
(
θ̂ − θ

)
 =

 V∞(θ̃) I∞(θ)−1

I∞(θ)−1 V∞(θ̂)

 .
So, the asymptotic covariance between the MLE and any other CAN estimator is equal to the MLE
asymptotic variance (the inverse of the information matrix).

Now, suppose we wish to test whether the the two estimators are in fact both converging to θ0,
versus the alternative hypothesis that the ”MLE” estimator is not in fact consistent (the consistency



of θ̃ is a maintained hypothesis). Under the null hypothesis that they are, we have

[
IK −IK

] 
√
n
(
θ̃ − θ0

)
√
n
(
θ̂ − θ0

)
 =
√
n
(
θ̃ − θ̂

)
,

will be asymptotically normally distributed as (work out on blackboard)

√
n
(
θ̃ − θ̂

)
d→ N

(
0, V∞(θ̃)− V∞(θ̂)

)
.

So,
n
(
θ̃ − θ̂

)′ (
V∞(θ̃)− V∞(θ̂)

)−1 (
θ̃ − θ̂

)
d→ χ2(ρ),

where ρ is the rank of the difference of the asymptotic variances. A statistic that has the same
asymptotic distribution is

(
θ̃ − θ̂

)′ (
V̂ (θ̃)− V̂ (θ̂)

)−1 (
θ̃ − θ̂

)
d→ χ2(ρ).

This is the Hausman test statistic, in its original form. The reason that this test has power under
the alternative hypothesis is that in that case the ”MLE” estimator will not be consistent, and will
converge to θA, say, where θA 6= θ0. Then the mean of the asymptotic distribution of vector

√
n
(
θ̃ − θ̂

)
will be θ0 − θA, a non-zero vector, so the test statistic will eventually reject, regardless of how small a
significance level is used.

• Note: if the test is based on a sub-vector of the entire parameter vector of the MLE, it is possible
that the inconsistency of the MLE will not show up in the portion of the vector that has been
used. If this is the case, the test may not have power to detect the inconsistency. This may occur,



for example, when the consistent but inefficient estimator is not identified for all the parameters
of the model, so that we estimate only some of the parameters using the inefficient estimator,
and the test does not include the others.

Some things to note:

• The rank, ρ, of the difference of the asymptotic variances is often less than the dimension of the
matrices, and it may be difficult to determine what the true rank is. This can occur when certain
moment conditions are used to define both estimators, which introduces some linear dependence
between the estimators. If the true rank is lower than what is taken to be true, the test will be
biased against rejection of the null hypothesis. The null is that both estimators are consistent.
Failure to reject when this hypothesis is false would cause us to use an inconsistent estimator:
not a desirable outcome! The contrary holds if we underestimate the rank.

• A solution to this problem is to use a rank 1 test, by comparing only a single coefficient. For
example, if a variable is suspected of possibly being endogenous, that variable’s coefficients may
be compared.

• This simple formula only holds when the estimator that is being tested for consistency is fully
efficient under the null hypothesis. This means that it must be a ML estimator or a fully
efficient estimator that has the same asymptotic distribution as the ML estimator. This is
quite restrictive since modern estimators such as GMM, QML, or even OLS with heteroscedastic
consistent standard errors are not in general fully efficient.

Following up on this last point, let’s think of two not necessarily efficient estimators, θ̂1 and θ̂2, where
one is assumed to be consistent, but the other may not be. We assume for expositional simplicity



Figure 14.7: Incorrect rank and the Hausman test



that both θ̂1 and θ̂2 belong to the same parameter space, and that each estimator can be expressed
as generalized method of moments (GMM) estimator. The estimators are defined (suppressing the
dependence upon data) by

θ̂i = arg min
θi∈Θ

m
i
(θi)′Wimi(θi)

where mi(θi) is a gi × 1 vector of moment conditions, and Wi is a gi × gi positive definite weighting
matrix, i = 1, 2. Consider the omnibus GMM estimator

(
θ̂1, θ̂2

)
= arg min

Θ×Θ

[
m1(θ1)′ m2(θ2)′

]  W1 0(g1×g2)

0(g2×g1) W2


 m1(θ1)
m2(θ2)

 . (14.7)

Suppose that the asymptotic covariance of the omnibus moment vector is

Σ = lim
n→∞V ar


√
n

 m1(θ1)
m2(θ2)


 (14.8)

≡
 Σ1 Σ12

· Σ2

 .

The standard Hausman test is equivalent to a Wald test of the equality of θ1 and θ2 (or subvectors of
the two) applied to the omnibus GMM estimator, but with the covariance of the moment conditions
estimated as

Σ̂ =
 Σ̂1 0(g1×g2)

0(g2×g1) Σ̂2

 .
While this is clearly an inconsistent estimator in general, the omitted Σ12 term cancels out of the test



statistic when one of the estimators is asymptotically efficient, as we have seen above, and thus it need
not be estimated.

The general solution when neither of the estimators is efficient is clear: the entire Σ matrix must
be estimated consistently, since the Σ12 term will not cancel out. Methods for consistently estimating
the asymptotic covariance of a vector of moment conditions are well-known, e.g., the Newey-West
estimator discussed previously. The Hausman test using a proper estimator of the overall covariance
matrix will now have an asymptotic χ2 distribution when neither estimator is efficient.

However, the test suffers from a loss of power due to the fact that the omnibus GMM estimator
of equation 14.7 is defined using an inefficient weight matrix. A new test can be defined by using an
alternative omnibus GMM estimator

(
θ̂1, θ̂2

)
= arg min

Θ×Θ

[
m1(θ1)′ m2(θ2)′

] (
Σ̃
)−1

 m1(θ1)
m2(θ2)

 , (14.9)

where Σ̃ is a consistent estimator of the overall covariance matrix Σ of equation 14.8. By standard
arguments, this is a more efficient estimator than that defined by equation 14.7, so the Wald test
using this alternative is more powerful. See my article in Applied Economics, 2004, for more details,
including simulation results. The Octave script hausman.m calculates the Wald test corresponding to
the efficient joint GMM estimator (the ”H2” test in my paper), for a simple linear model.

14.15 Application: Nonlinear rational expectations

Readings: Hansen and Singleton, Econometrics, 1982; Tauchen, Journal of Business and Economic
Statistics, 1986.

http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/Hausman/hausman.m


Though GMM estimation has many applications, application to rational expectations models is
elegant, since theory directly suggests the moment conditions. Hansen and Singleton’s 1982 paper is
also a classic worth studying in itself. Though I strongly recommend reading the paper, I’ll use a
simplified model with similar notation to Hamilton’s. The literature on estimation of these models
has grown a lot since these early papers. After work like the cited papers, people moved to ML
estimation of linearized models, using Kalman filtering. Current methods are usually Bayesian, and
involve sophisticated filtering methods to compute the likelihood function for nonlinear models with
non-normal shocks. There is a lot of interesting stuff that is beyond the scope of this course. I have
done some work using simulation-based estimation methods applied to such models. The methods
explained in this section are intended to provide an example of GMM estimation. They are not the
state of the art for estimation of such models.

We assume a representative consumer maximizes expected discounted utility over an infinite hori-
zon. Expectations are rational, and the agent has full information (is fully aware of the history of the
world up to the current time period - how’s that for an assumption!). Utility is temporally additive,
and the expected utility hypothesis holds. The future consumption stream is the stochastic sequence
{ct}∞t=0 . The objective function at time t is the discounted expected utility

∞∑
s=0

βsE (u(ct+s)|It) . (14.10)

• The parameter β is between 0 and 1, and reflects discounting.

• It is the information set at time t, and includes the all realizations of all random variables indexed
t and earlier.

• The choice variable is ct - current consumption, which is constrained to be less than or equal to



current wealth wt.

• Suppose the consumer can invest in a risky asset. A dollar invested in the asset yields a gross
return

(1 + rt+1) = pt+1 + dt+1

pt

where pt is the price and dt is the dividend in period t. Thus, rt+1 is the net return on a dollar
invested in period t.

• The price of ct is normalized to 1.

• Current wealth wt = (1 + rt)it−1, where it−1 is investment in period t − 1. So the problem
is to allocate current wealth between current consumption and investment to finance future
consumption: wt = ct + it.

• Future net rates of return rt+s, s > 0 are not known in period t: the asset is risky.

A partial set of necessary conditions for utility maximization have the form:

u′(ct) = βE {(1 + rt+1)u′(ct+1)|It} . (14.11)

To see that the condition is necessary, suppose that the lhs < rhs. Then by reducing current con-
sumption marginally would cause equation 14.10 to drop by u′(ct), since there is no discounting of
the current period. At the same time, the marginal reduction in consumption finances investment,
which has gross return (1 + rt+1) , which could finance consumption in period t + 1. This increase in
consumption would cause the objective function to increase by βE {(1 + rt+1)u′(ct+1)|It} . Therefore,
unless the condition holds, the expected discounted utility function is not maximized.



• To use this we need to choose the functional form of utility. A constant relative risk aversion
(CRRA) form is

u(ct) = c1−γ
t − 1
1− γ

where γ is the coefficient of relative risk aversion. With this form,

u′(ct) = c−γt

so the foc are
c−γt = βE

{
(1 + rt+1) c−γt+1|It

}
While it is true that

E
(
c−γt − β

{
(1 + rt+1) c−γt+1

})
|It = 0

so that we could use this to define moment conditions, it is unlikely that ct is stationary, even though
it is in real terms, and our theory requires stationarity. To solve this, divide though by c−γt

E
1-β

(1 + rt+1)
(
ct+1

ct

)−γ
 |It = 0

(note that ct can be passed though the conditional expectation since ct is chosen based only upon
information available in time t). That is to say, ct is in the information set It.

Now
1-β

(1 + rt+1)
(
ct+1

ct

)−γ
is analogous to ht(θ) defined above: it’s a scalar moment condition. To get a vector of moment condi-



tions we need some instruments. Suppose that zt is a vector of variables drawn from the information
set It. We can use the necessary conditions to form the expressions

[
1− β (1 + rt+1)

(
ct+1
ct

)−γ]
zt ≡ mt(θ)

• θ represents β and γ.

• Therefore, the above expression may be interpreted as a moment condition which can be used
for GMM estimation of the parameters θ0.

Note that at time t, mt−s has been observed, and is therefore an element of the information set. By
rational expectations, the autocovariances of the moment conditions other than Γ0 should be zero.
The optimal weighting matrix is therefore the inverse of the variance of the moment conditions:

Ω∞ = limE
[
nm(θ0)m(θ0)′

]
which can be consistently estimated by

Ω̂ = 1/n
n∑
t=1

mt(θ̂)mt(θ̂)′

As before, this estimate depends on an initial consistent estimate of θ, which can be obtained by
setting the weighting matrix W arbitrarily (to an identity matrix, for example). After obtaining θ̂, we
then minimize

s(θ) = m(θ)′Ω̂−1m(θ).

This process can be iterated, e.g., use the new estimate to re-estimate Ω, use this to estimate θ0, and



repeat until the estimates don’t change.

• In principle, we could use a very large number of moment conditions in estimation, since any
current or lagged variable could be used in xt. Since use of more moment conditions will lead
to a more (asymptotically) efficient estimator, one might be tempted to use many instrumental
variables. We will do a computer lab that will show that this may not be a good idea with
finite samples. This issue has been studied using Monte Carlos (Tauchen, JBES, 1986). The
reason for poor performance when using many instruments is that the estimate of Ω becomes
very imprecise.

• Empirical papers that use this approach often have serious problems in obtaining precise es-
timates of the parameters, and identification can be problematic. Note that we are basing
everything on a single partial first order condition. Probably this f.o.c. is simply not informative
enough.

14.16 Empirical example: a portfolio model

The Octave program portfolio.m performs GMM estimation of a portfolio model, using the data file
tauchen.data. The columns of this data file are c, p, and d in that order. There are 95 observations
(source: Tauchen, JBES, 1986). As instruments we use lags of c and r, as well as a constant. For a
single lag the estimation results are

MPITB extensions found

http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/portfolio.m
http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/tauchen.data


******************************************************
Example of GMM estimation of rational expectations model

GMM Estimation Results
BFGS convergence: Normal convergence

Objective function value: 0.000014
Observations: 94

Value df p-value
X^2 test 0.001 1.000 0.971

estimate st. err t-stat p-value
beta 0.915 0.009 97.271 0.000
gamma 0.569 0.319 1.783 0.075
******************************************************

For two lags the estimation results are

MPITB extensions found

******************************************************
Example of GMM estimation of rational expectations model



GMM Estimation Results
BFGS convergence: Normal convergence

Objective function value: 0.037882
Observations: 93

Value df p-value
X^2 test 3.523 3.000 0.318

estimate st. err t-stat p-value
beta 0.857 0.024 35.636 0.000
gamma -2.351 0.315 -7.462 0.000
******************************************************

Pretty clearly, the results are sensitive to the choice of instruments. Maybe there is some problem here:
poor instruments, or possibly a conditional moment that is not very informative. Moment conditions
formed from Euler conditions sometimes do not identify the parameter of a model. See Hansen, Heaton
and Yarron, (1996) JBES V14, N3. I believe that this is the case here, though I haven’t checked it
carefully.

Aside on ML estimation of RBC model. A similar model is the RBC model discussed by
Fernández-Villaverde: Fernández-Villaverde’s RBC example. Files to estimate this model by maximum

http://www.dynare.org/documentation-and-support/examples/rbc.pdf


likelihood are provided here. The main point for the purposes of this course is that methods other
than GMM based on the Euler equation do exist, and work better. For those of you who go on to do
empirical macro work, this example may be useful in the future.

http://pareto.uab.es/mcreel/Econometrics/Examples/RBC/EstimateRBC_ML.mod


14.17 Exercises

1. Do the exercises in section 14.9.

2. Show how the GIV estimator presented in section 14.9 can be adapted to account for an error
term with HET and/or AUT.

3. For the GIV estimator presented in section 14.9, find the form of the expressions I∞(θ0) and
J∞(θ0) that appear in the asymptotic distribution of the estimator, assuming that an efficient
weight matrix is used.

4. The Octave script meps.m estimates a model for office-based doctpr visits (OBDV) using two
different moment conditions, a Poisson QML approach and an IV approach. If all conditioning
variables are exogenous, both approaches should be consistent. If the PRIV variable is endoge-
nous, only the IV approach should be consistent. Neither of the two estimators is efficient in any
case, since we already know that this data exhibits variability that exceeds what is implied by the
Poisson model (e.g., negative binomial and other models fit much better). Test the exogeneity of
the variable PRIV with a GMM-based Hausman-type test, using the Octave script hausman.m
for hints about how to set up the test.

5. Using Octave, generate data from the logit dgp. The script EstimateLogit.m should prove quite
helpful.

(a) Recall that E(yt|xt) = p(xt, θ) = [1 + exp(−xt′θ)]−1. Consider the moment condtions
(exactly identified) mt(θ) = [yt − p(xt, θ)]xt. Estimate by GMM (using gmm_results),
using these moments.

http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/MEPS/meps.m
http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/Hausman/hausman.m
http://pareto.uab.es/mcreel/Econometrics/Examples/NonlinearOptimization/EstimateLogit.m


(b) Estimate by ML (using mle_results).

(c) The two estimators should coincide. Prove analytically that the estimators coicide.

6. When working out the structure of Ωn, show that E(mtm
′
t+s) = Γ′v.

7. Verify the missing steps needed to show that n · m(θ̂)′Ω̂−1m(θ̂) has a χ2(g − K) distribution.
That is, show that the monster matrix is idempotent and has trace equal to g −K.

8. For the portfolio example, experiment with the program using lags of 3 and 4 periods to define
instruments

(a) Iterate the estimation of θ = (β, γ) and Ω to convergence.

(b) Comment on the results. Are the results sensitive to the set of instruments used? Look at
Ω̂ as well as θ̂. Are these good instruments? Are the instruments highly correlated with one
another? Is there something analogous to collinearity going on here?

9. Run the Octave script GMM/chi2gmm.m with several sample sizes. Do the results you obtain
seem to agree with the consistency of the GMM estimator? Explain.

10. The GMM estimator with an arbitrary weight matrix has the asymptotic distribution

√
n
(
θ̂ − θ0

)
d→ N

[
0, (D∞W∞D′∞)−1

D∞W∞Ω∞W∞D′∞ (D∞W∞D′∞)−1
]

Supposing that you compute a GMM estimator using an arbitrary weight matrix, so that this
result applies. Carefully explain how you could test the hypothesis H0 : Rθ0 = r versus HA :
Rθ0 6= r, where R is a given q × k matrix, and r is a given q × 1 vector. I suggest that you use

http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/chi2gmm.m


a Wald test. Explain exactly what is the test statistic, and how to compute every quantity that
appears in the statistic.

11. (proof that the GMM optimal weight matrix is one such thatW∞ = Ω−1
∞ ) Consider the difference

of the asymptotic variance using an arbitrary weight matrix, minus the asymptotic variance using
the optimal weight matrix:

A = (D∞W∞D′∞)−1
D∞W∞Ω∞W∞D′∞ (D∞W∞D′∞)−1 −

(
D∞Ω−1

∞D
′
∞
)−1

Set B = (D∞W∞D′∞)−1D∞W∞ − (D∞Ω−1
∞D

′
∞)−1

D∞Ω−1
∞ . Verify that A = BΩ∞B

′. What is
the implication of this? Explain.

12. Recall the dynamic model with measurement error that was discussed in class:

y∗t = α + ρy∗t−1 + βxt + εt

yt = y∗t + υt

where εt and υt are independent Gaussian white noise errors. Suppose that y∗t is not observed,
and instead we observe yt. We can estimate the equation

yt = α + ρyt−1 + βxt + νt

using GIV, as was done above. The Octave script GMM/SpecTest.m performs a Monte Carlo
study of the performance of the GMM criterion test,

n · sn(θ̂) d→ χ2(g −K)

http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/SpecTest.m


Examine the script and describe what it does. Run this script to verify that the test over-rejects.
Increase the sample size, to determine if the over-rejection problem becomes less severe. Discuss
your findings.



Chapter 15

Models for time series data

Hamilton, Time Series Analysis is a good reference for this chapter.
Up to now we’ve considered the behavior of the dependent variable yt as a function of other variables

xt. These variables can of course contain lagged dependent variables, e.g., xt = (wt, yt−1, ..., yt−j). Pure
time series methods consider the behavior of yt as a function only of its own lagged values, unconditional
on other observable variables. One can think of this as modeling the behavior of yt after marginalizing
out all other variables. While it’s not immediately clear why a model that has other explanatory
variables should marginalize to a linear in the parameters time series model, most applied time series
work is done with linear models, though nonlinear time series is also a large and growing field.

Basic concepts

Definition 55. [Stochastic process] A stochastic process is a sequence of random variables, indexed
by time: {Yt}∞t=−∞

444



Definition 56. [Time series] A time series is one observation of a stochastic process, over a specific
interval: {yt}nt=1.

So a time series is a sample of size n from a stochastic process. It’s important to keep in mind that
conceptually, one could draw another sample, and that the values would be different.

Definition 57. [Autocovariance] The jth autocovariance of a stochastic process is γjt = E(yt−µt)(yt−j−
µt−j) where µt = E (yt) .

Definition 58. [Covariance (weak) stationarity] A stochastic process is covariance stationary if it has
time constant mean and autocovariances of all orders:

µt = µ, ∀t
γjt = γj, ∀t

As we’ve seen, this implies that γj = γ−j : the autocovariances depend only one the interval between
observations, but not the time of the observations.

Definition 59. [Strong stationarity] A stochastic process is strongly stationary if the joint distribution
of an arbitrary collection of the {Yt} doesn’t depend on t.

Since moments are determined by the distribution, strong stationarity⇒weak stationarity.



What is the mean of Yt? The time series is one sample from the stochastic process. One could
think of M repeated samples from the stoch. proc., e.g., {ytm} By a LLN, we would expect that

lim
M→∞

1
M

M∑
m=1

ytm
p→ E(Yt)

The problem is, we have only one sample to work with, since we can’t go back in time and collect
another. How can E(Yt) be estimated then? It turns out that ergodicity is the needed property.

Definition 60. [Ergodicity]. A stationary stochastic process is ergodic (for the mean) if the time
average converges to the mean

1
n

n∑
t=1

yt
p→ µ (15.1)

A sufficient condition for ergodicity is that the autocovariances be absolutely summable:

∞∑
j=0
|γj| <∞

This implies that the autocovariances die off, so that the yt are not so strongly dependent that they
don’t satisfy a LLN.

Definition 61. [Autocorrelation] The jth autocorrelation, ρj is just the jth autocovariance divided by
the variance:

ρj = γj
γ0

(15.2)



Definition 62. [White noise] White noise is just the time series literature term for a classical error.
εt is white noise if i) E(εt) = 0,∀t, ii) V (εt) = σ2,∀t and iii) εt and εs are independent, t 6= s. Gaussian
white noise just adds a normality assumption.

15.1 ARMA models

With these concepts, we can discuss ARMA models. These are closely related to the AR and MA
error processes that we’ve already discussed. The main difference is that the lhs variable is observed
directly now.

MA(q) processes

A qth order moving average (MA) process is

yt = µ+ εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q

where εt is white noise. The variance is

γ0 = E (yt − µ)2

= E (εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q)2

= σ2 (1 + θ2
1 + θ2

2 + · · ·+ θ2
q

)



Similarly, the autocovariances are

γj = E [(yt − µ) (yt−j − µ)]
= σ2(θj + θj+1θ1 + θj+2θ2 + · · ·+ θqθq−j), j ≤ q

= 0, j > q

Therefore an MA(q) process is necessarily covariance stationary and ergodic, as long as σ2 and all of
the θj are finite.

For example, if we have an MA(1) model, then E(yt) = µ, V (yt) = σ2(1 + θ2
1), and γ1 = σ2θ1. The

higher order autocovariances are zero.
Thus, if the model is MA(1), the density of the vector of n observations, y, is

fY (y|ρ) = 1√
(2π)n |Σ|

exp
(
−1

2 (y − µ)′Σ−1 (y − µ)
)

where

Σ = σ2



1 + θ2
1 θ1 0 · · · 0

θ1
. . . . . . . . . ...

0 . . . . . . . . . 0
... . . . . . . . . . θ1

0 · · · 0 θ1 1 + θ2
1


.

With this, it is very easy to program the log-likelihood function. For higher order MA models, the only
difference is the structure of Σ becomes more complicated. In this form, one needs a lot of computer
memory. A more economical approach uses the Kalman filter, which we’ll see in the discussion of state



space models.

• An issue to be aware of is that MA models are not identified, in that there exist multiple
parameter values that give the same value of the likelihood function.

• For example, the MA(1) model with σ̃2 = θ2σ2 and θ̃1 = 1
θ1
has identical first and second moments

to the original model, so the likelihood function has the same value.

• Normally, the parameterization that leads to an invertible MA model is the one that is selected.
An invertible MA model is one that has a representation as a AR(∞) model. For the MA(1)
model, the invertible parameterization has |θ1| < 1.

• This implies that parameter restrictions will need to be imposed when estimating the MA model,
to enforce selection of the invertible model.

AR(p) processes

An AR(p) process can be represented as

yt = c+ φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt

This is just a linear regression model, and assuming stationarity, we can estimate the parameters by
OLS. What is needed for stationarity?

The dynamic behavior of an AR(p) process can be studied by writing this pth order difference



equation as a vector first order difference equation (this is known as the companion form):



yt

yt−1
...
yt−p+1


=



c

0
...
0


+



φ1 φ2 · · · φp

1 0 0 0
0 1 0 . . . 0
... . . . . . . . . . 0 · · ·
0 · · · 0 1 0





yt−1

yt−2
...
yt−p


+



εt

0
...
0



or
Yt = C + FYt−1 + Et

With this, we can recursively work forward in time:

Yt+1 = C + FYt + Et+1

= C + F (C + FYt−1 + Et) + Et+1

= C + FC + F 2Yt−1 + FEt + Et+1

and

Yt+2 = C + FYt+1 + Et+2

= C + F
(
C + FC + F 2Yt−1 + FEt + Et+1

)
+ Et+2

= C + FC + F 2C + F 3Yt−1 + F 2Et + FEt+1 + Et+2



or in general

Yt+j = C + FC + · · ·+ F jC + F j+1Yt−1 + F jEt + F j−1Et+1 + · · ·+ FEt+j−1 + Et+j

Consider the impact of a shock in period t on yt+j. This is simply

∂Yt+j
∂E ′t (1,1)

= F j
(1,1)

If the system is to be stationary, then as we move forward in time this impact must die off. Otherwise
a shock causes a permanent change in the mean of yt. Therefore, stationarity requires that

lim
j→∞

F j
(1,1) = 0

• Save this result, we’ll need it in a minute.

Consider the eigenvalues of the matrix F. These are the λ such that

|F − λIP | = 0

The determinant here can be expressed as a polynomial. For example, for p = 1, the matrix F is
simply

F = φ1

so
|φ1 − λ| = 0



can be written as
φ1 − λ = 0

When p = 2, the matrix F is

F =
 φ1 φ2

1 0


so

F − λIP =
 φ1 − λ φ2

1 −λ


and

|F − λIP | = λ2 − λφ1 − φ2

So the eigenvalues are the roots of the polynomial

λ2 − λφ1 − φ2

which can be found using the quadratic equation. This generalizes. For a pth order AR process, the
eigenvalues are the roots of

λp − λp−1φ1 − λp−2φ2 − · · · − λφp−1 − φp = 0

Supposing that all of the roots of this polynomial are distinct, then the matrix F can be factored as

F = TΛT−1

where T is the matrix which has as its columns the eigenvectors of F, and Λ is a diagonal matrix with



the eigenvalues on the main diagonal. Using this decomposition, we can write

F j =
(
TΛT−1) (TΛT−1) · · · (TΛT−1)

where TΛT−1 is repeated j times. This gives

F j = TΛjT−1

and

Λj =



λj1 0 0
0 λj2

. . .
0 λjp


Supposing that the λi i = 1, 2, ..., p are all real valued, it is clear that

lim
j→∞

F j
(1,1) = 0

requires that
|λi| < 1, i = 1, 2, ..., p

e.g., the eigenvalues must be less than one in absolute value.

• It may be the case that some eigenvalues are complex-valued. The previous result generalizes
to the requirement that the eigenvalues be less than one in modulus, where the modulus of a
complex number a+ bi is

mod(a+ bi) =
√
a2 + b2



This leads to the famous statement that “stationarity requires the roots of the determinantal
polynomial to lie inside the complex unit circle.” draw picture here.

• When there are roots on the unit circle (unit roots) or outside the unit circle, we leave the world
of stationary processes.

• Dynamic multipliers: ∂yt+j/∂εt = F j
(1,1) is a dynamic multiplier or an impulse-response func-

tion. Real eigenvalues lead to steady movements, whereas complex eigenvalues lead to ocillatory
behavior. Of course, when there are multiple eigenvalues the overall effect can be a mixture.
pictures

Moments of AR(p) process

The AR(p) process is
yt = c+ φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt

Assuming stationarity, E(yt) = µ, ∀t, so

µ = c+ φ1µ+ φ2µ+ ...+ φpµ

so
µ = c

1− φ1 − φ2 − ...− φp
and

c = µ− φ1µ− ...− φpµ



so

yt − µ = µ− φ1µ− ...− φpµ+ φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt − µ
= φ1(yt−1 − µ) + φ2(yt−2 − µ) + ...+ φp(yt−p − µ) + εt

With this, the second moments are easy to find: The variance is

γ0 = φ1γ1 + φ2γ2 + ...+ φpγp + σ2

The autocovariances of orders j ≥ 1 follow the rule

γj = E [(yt − µ) (yt−j − µ))]
= E [(φ1(yt−1 − µ) + φ2(yt−2 − µ) + ...+ φp(yt−p − µ) + εt) (yt−j − µ)]
= φ1γj−1 + φ2γj−2 + ...+ φpγj−p

Using the fact that γ−j = γj, one can take the p + 1 equations for j = 0, 1, ..., p, which have p + 1
unknowns (σ2, γ0, γ1, ..., γp) and solve for the unknowns. With these, the γj for j > p can be solved
for recursively.

ARMA model

An ARMA(p, q) model is (1 + φ1L+ φ2L
2 + ...+ φpL

p)yt = c+ (1 + θ1L+ θ2L
2 + ...+ θqL

q)εt. These
are popular in applied time series analysis. A high order AR process may be well approximated by a
low order MA process, and a high order MA process may be well approximated by a low order AR



process. By combining low order AR and MA processes in the same model, one can hope to fit a wide
variety of time series using a parsimonious number of parameters. There is much literature on how to
choose p and q, which is outside the scope of this course. Estimation can be done using the Kalman
filter, assuming that the errors are normally distributed.

15.2 VAR models

Consider the model

yt = C + A1yt−1 + εt (15.3)
E(εtε′t) = Σ
E(εtε′s) = 0, t 6= s

where yt and εt are G× 1 vectors, C is a G× 1 of constants, and A1is a G×G matrix of parameters.
The matrix Σ is a G × G covariance matrix. Assume that we have n observations. This is a vector
autoregressive model, of order 1 - commonly referred to as a VAR(1) model. It is a collection of G
AR(1) models, augmented to include lags of other endogenous variables, and the G equations are
contemporaneously correlated. The extension to a VAR(p) model is quite obvious.

As shown in Section 10.3, it is efficient to estimate a VAR model using OLS equation by equation,
there is no need to use GLS, in spite of the cross equation correlations.

A VAR model of this form can be thought of as the reduced form of a dynamic simultaneous
equations system, with all of the variables treated as endogenous, and with lags of all of the endogenous



variables present. The simultaneous equations model is (see equation 10.1)

Y ′t Γ = X ′tB + E ′t

which can be written after transposing (and adapting notation to use small case, pulling the constant
out of Xt and using vt for the error) as Γ′yt = a + B′xt + vt. Let xt = yt−1. Then we have Γ′yt =
a+B′yt−1 + vt. Premultiplying by the inverse of Γ′ gives

yt = (Γ′)−1
a+ (Γ′)−1

B′yt−1 + (Γ′)−1
vt.

Finally define C = (Γ′)−1 a, A1 = (Γ′)−1B′ and εt = (Γ′)−1 vt, and we have the VAR(1) model of
equation 15.3. C. Sims originally proposed reduced form VAR models as an alternative to structural
simultaneous equatons models, which were perceived to require too many unrealistic assumptions for
their identification. However, the search for structural interpretations of VAR models slowly crept back
into the literature, leading to ”structural VARs”. A structural VAR model is really just a dynamic
linear simultaneous equations model, with other imaginative and hopefully more realistic methods used
for identification. The issue of identifying the structural parameters Γ and B is more or less the same
problem that was studied in the context of simultaneous equatons. There, identification was obtained
through zero restrictions. In the structural VAR literature, zero restrictions are often used, but other
information may also be used, such as covariance matrix restrictions or sign restrictions. Interest often
focuses on the impulse-response functions. Identification of the impact of structural shocks (how to
estimate the impact-response functions) is complicated, with many alternative methodologies, and is
often a topic of much disagreement among practitioners. The estimated impulse response functions
are often sensitive to the identification strategy that is used. There is a large literature. Papers by C.



Sims are a good place to start, if one wants to learn more. He also offers a good deal of useful software
on his web page.

An issue which arises when a VAR(p) model yt = C +A1yt−1 + · · ·+Apyt−p + εt is contemplated is
that the number of parameters increases rapidly in p, which introduces severe collinearity problems.
One can use Bayesian methods such as the ”Minnesota prior” (Litterman), which is a prior that each
variable separately follows a random walk (an AR(1) model with ρ = 1). The prior on A1 is that it is
an identity matrix, and the prior on the Aj, j > 1 is that they are zero matrices. This can be done
using stochastic restrictions similar to what was in the discussion of collinearity and ridge regression.
For example, a VAR(2) model in de-meaned variables, with G variables, can be written as

Y =
[
Y−1 Y−2

]  A1

A2

 + ε

We can impose the stochastic restriction that A1 = I2 − v1 and that A2 = 02 − v2. Augmenting the
data with these 4 ”artificial observations”, we get


Y

IG

0G

 =


Y−1 Y−2

IG 0G
0G IG


 A1

A2

 +


ε

v1

v2



Then we can impose how important the restrictions are by weighting the stochastic restrictions, along



the lines of a GLS heteroscedasticity correction:


Y

k1IG

0G

 =


Y−1 Y−2

k1IG 0G
0G k2IG


 A1

A2

 +


ε

k1v1

k2v2



Then we fit by OLS. When k1 is small, the estimated A1 will be forced to be close to an identity
matrix. When k2 is small, the second lag coefficients are all forced to zero. Jointly, these restrictions
push the model in the direction of separate random walks for each variable. The degree to which the
model is pushed depends on the ks. When the ks are large, the fit is close to the unrestricted OLS
fit. An example is given in BVar.m

”Bayesian VARs” is a now a substantial body of literature. An introduction to more formal Bayesian
methods is given in a chapter that follows. For highly parameterized models, Bayesian methods can
help to impose structure.

15.3 ARCH, GARCH and Stochastic volatility

ARCH (autoregressive conditionally heteoscedastic) models appeared in the literature in 1982, in
Engle, Robert F. (1982). "Autoregressive Conditional Heteroscedasticity with Estimates of Variance
of United Kingdom Inflation", Econometrica 50:987-1008. This paper stimulated a very large growth
in the literature for a number of years afterward. The related GARCH (generalized ARCH) model is
now one of the most widely used models for financial time series.

Financial time series often exhibit several type of behavior:

• volatility clustering: periods of low variation can be followed by periods of high variation

http://pareto.uab.es/mcreel/Econometrics/Examples/TimeSeries/BVar.m


• fat tails, or excess kurtosis: the marginal density of a series is more strongly peaked and has
fatter tails than does a normal distribution with the same mean and variance.

• other features, such as leverage (correlation between returns and volatility) and perhaps slight
autocorrelation within the bounds allowed by arbitrage.

The data set ”nysewk.gdt”, which is provided with Gretl, provides an example. If we compute 100
times the growth rate of the series, using log differences, we can obtain the plots in Figure 15.1. In the
first we clearly see volatility clusters, and in the second, we see excess kurtosis and tails fatter than
the normal distribution. The skewness suggests that leverage may be present.

• regress returns on its own lag and on squared returns and lags: low predictability

• regress squared returns on its own lags and on returns: more predictable, evidence of leverage

The presence of volatility clusters indicates that the variance of the series is not constant over time,
conditional on past events. Engle’s ARCH paper was the first to model this feature.

ARCH

A basic ARCH specification is

yt = µ+ ρyt−1 + εt

≡ gt + εt

εt = σtut

σ2
t = ω +

q∑
i=1

αiε
2
t−i



Figure 15.1: NYSE weekly close price, 100 ×log differences
(a) Time series plot

(b) Frequency distribution



where the ut are Gaussian white noise shocks. The ARCH variance is a moving average process.
Previous large shocks to the series cause the conditional variance of the series to increase. There is no
leverage: negative shocks have the same impact on the future variance as do positive shocks..

• for σ2
t to be positive for all realizations of {εt}, we need ω > 0, αi ≥ 0, ∀i.

• to ensure that the model is covariance stationary, we need ∑
i αi < 1. Otherwise, the variances

will explode off to infinity.

Given that εt is normally distributed, to find the likelihood in terms of the observable yt instead of
the unobservable εt, first note that the series ut = (yt − gt) /σt = εt

σt
is iid Gaussian, so the likelihood

is simply the product of standard normal densities.

u ∼ N(0, I), so

f(u) =
n∏
t=1

1√
2π

exp
−u2

t

2


The joint density for y can be constructed using a change of variables:

• We have ut = (yt − µ− ρyt−1) /σt, so ∂ut
∂yt

= 1
σt

and | ∂u∂y′ | =
∏n
t=1

1
σt
,

• doing a change of variables,

f(y; θ) =
n∏
t=1

1√
2π

1
σt

exp
−1

2

(
yt − µ− ρyt−1

σt

)2
where θ includes the parameters in gt and the alpha parameters of the ARCH specification.



Taking logs,
lnL(θ) = −n ln

√
2π −

n∑
t=1

ln σt −
1
2

n∑
t=1

(
yt − µ− ρyt−1

σt

)2
.

In principle, this is easy to maximize. Some complications can arise when the restrictions for positivity
and stationarity are imposed. Consider a fairly short data series with low volatility in the initial part,
and high volatility at the end. This data appears to have a nonstationary variance sequence. If one
attempts to estimate and ARCH model with stationarity imposed, the data and the restrictions are
saying two different things, which can make maximization of the likelihood function difficult.

The Octave script ArchExample.m illustrates estimation of an ARCH(1) model, using the NYSE
closing price data.

GARCH

Note that an ARCH model specifies the variance process as a moving average. For the same reason
that an ARMA model may be used to parsimoniously model a series instead of a high order AR or
MA, one can do the same thing for the variance series. A basic GARCH(p,q) (Bollerslev, Tim (1986).
"Generalized Autoregressive Conditional Heteroskedasticity", Journal of Econometrics, 31:307-327)
specification is

yt = µ+ ρyt−1 + εt

εt = σtut

σ2
t = ω +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiσ
2
t−i

http://pareto.uab.es/mcreel/Econometrics/Examples/TimeSeries/ArchExample.m


The idea is that a GARCH model with low values of p and q may fit the data as well or better than
an ARCH model with large q.

• the model also requires restrictions for positive variance and stationarity, which are:

– ω > 0

– αi ≥ 0, i = 1, ..., q

– βi ≥ 0, i = 1, ..., p

– ∑q
i=1 αi+

∑p
i=1 βi < 1.

• to estimate a GARCH model, you need to initialize σ2
0 at some value. The sample unconditional

variance is one possibility. Another choice could be the sample variance of the initial elements
of the sequence. One can also ”backcast” the conditional variance.

The GARCH model also requires restrictions on the parameters to ensure stationarity and positivity
of the variance. A useful modification is the EGARCH model (exponential GARCH, Nelson, D. B.
(1991). "Conditional heteroskedasticity in asset returns: A new approach", Econometrica 59: 347-
370). This model treats the logarithm of the variance as an ARMA process, so the variance will be
positive without restrictions on the parameters. It is also possible to introduce asymmetry (leverage)
and non-normality.

The Octave script GarchExample.m illustrates estimation of a GARCH(1,1) model, using the NYSE
closing price data. You can get the same results more quickly using Gretl, which takes advantage of
C code for the model. If you play with the example, you can see that the results are sensitive to start
values. The likelihood function does not appear to have a nice well-defined global maximum. Thus,

http://pareto.uab.es/mcreel/Econometrics/Examples/TimeSeries/GarchExample.m


one needs to use care when estimating this sort of model, or rely on some software that is known to
work well.

Note that the test of homoscedasticity against ARCH or GARCH involves parameters being on
the boundary of the parameter space. Also, the reducton of GARCH to ARCH has the same prob-
lem. Testing needs to be done taking this into account. See Demos and Sentana (1998) Journal of
Econometrics.

Stochastic volatility

In ARCH and GARCH models, the same shocks that affect the level also affect the variance. The
stochastic volatility model allows the variance to have its own random component. A simple example
is

yt = exp(ht)εt
ht = α + ρht−1 + σηt

In this model, the log of the standard error of the observed sequence follows an AR(1) model. Once can
introduce leverage by allowing correlation between εt and ht. Variants of this sort of model are widely
used to model financial data, competing with the GARCH(1,1) model for being the most popular
choice. Many estimation methods have been proposed.



15.4 Diffusion models

Financial data is often modeled using a continuous time specification. An example is the following
model, taken from a paper of mine (with D. Kristensen).

A basic model is a simple continuous time stochastic volatility model with leverage. Log price
pt = log (Pt), solves the following pure diffusion model,

dpt = (µ0 + µ1exp (ht − α)) dt+ exp
(
ht
2

)
dW1,t

where the spot volatility (the instantaneous variance of returns), exp(ht) is modeled using its logarithm:

dht = κ(α− ht)dt+ σdW2,t.

Here,W1,t andW2,t are two standard Brownian motions with instantaneous correlation ρ = Cov (dW1,t, dW2,t).
This model is the well-known log-Normal volatility model of Wiggins (1987); see also Chesney and
Scott (1989). The parameters are interpreted as follows: µ0 is the baseline drift of returns; µ1 allows
drift to depend upon spot volatility; α is the mean of log volatility; κ is the speed of mean reversion
of log volatility, such that low values of κ imply high persistence of log volatility; σ is the so-called
volatility of volatility; and ρ is a leverage parameter that affects the correlation between returns and
log volatility. We collect the parameters in θ = (µ0, µ1, α, κ, σ, ρ).

An extension is to add jumps to the above model. These occur with Poisson frequency, and are
conditionally normally distributed. More specifically, log-price pt solves the following continuous-time



jump-diffusion model,

dpt = (µ0 + µ1exp (ht/2)) dt+ exp
(
ht
2

)
dW1,t + JtdNt.

The Poisson process Nt counts the number of jumps up to time t, and has jump intensity λt =
λ0 + λ1exp (ht − α) that varies with the volatility, while jump sizes, conditional on the occurence of
a jump, are independent and conditionally normally distributed: Jt|Ft− > 0 ∼ N(µJ , σ2

J), where Ft
is the standard filtration. The inclusion of the jump component adds four parameters to θ as defined
above, µJ , σ2

J and λ0, and λ1. This jump model was considered in, for example, Andersen, Benzoni
and Lund (2002).

An example of how returns, rt = 100(pt − pt−1), generated by such a model might look is given in
Figure 15.2. The spot volatility is plotted in Figure 15.3. Returns are observable, but spot volatility
is not.

One might want to try to infer the parameters of the model, and also the latent spot volatility,
using the observable data. Estimation of the parameters of such models is complicated by the fact
that data is available in discrete time: p1, p2, ...pn, but the model is in continuous time. One can
”discretize” the model, to obtain something like the discrete time SV model of the previous section,
but the discrete time transition density implied by the approximating model is not the same as the
true transition density

pt ∼ fp (pt|pt−1, ht−1; θ) ,

induced by the continuous time model. This true density is unknown, however, so using it for ML
estimation is not possible. If one estimates the discrete time version treating it as the actual density,
there is an approximation misspecification that causes the estimates to be inconsistent: we’re not



Figure 15.2: Returns from jump-diffusion model
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doing ML, we’re doing quasi-ML, which is in general an inconsistent estimator. Consistent estimation
of parameters is discussed in Section 22.1, in the Chapter on simulation-based estimation. A means
of learning about spot volatility, ht, is discussed in the chapter on nonparametric inference, in Section
20.5.

15.5 State space models

For linear time series models with Gaussian shocks, it is often useful to put the model in state space
form, as in this form, the Kalman filter provides a convenient way to compute the likelihood function.



Figure 15.3: Spot volatility, jump-diffusion model
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For example, with an MA model, we can compute the likelihood function using the joint density of the
whole sample, y ∼ N(0,Σ) where Σ is an n× n matrix that depends on σ2 and φ, The log likelihood
is f(y|σ2, φ)

See Fernández-Villaverde’s notes Fernández-Villaverde’s Kalman filter notes and Mikusheva’s MIT
OpenCourseWare notes, lectures 20 and 21: Mikusheva’s Kalman filter notes. I will follow Mikusheva’s
notes in class.

For nonlinear state space models, or non-Gaussian state space models, the basic Kalman filter
cannot be used, and the particle filter is becoming a widely-used means of computing the likelihood.
This is a fairly new, computationally demanding technique, and is currently (this was written in 2013)
an active area of research. Papers by Fernández-Villaverde and Rubio-Ramírez provide interesting and
reasonably accessible applications in the context of estimating macroeconomic (DSGE) models.

15.6 Nonstationarity and cointegration

I’m going to follow Karl Whelan’s notes, which are available at Whelan notes.

15.7 Exercises

1. Use Matlab to estimate the same GARCH(1,1) model as in the GarchExample.m script provided
above. Also, estimate an ARCH(4) model for the same data. If unconstrained estimation
does not satisfy stationarity restrictions, then do contrained estimation. Compare likelihood
values. Which of the two models do you prefer? But do the models have the same number
of parameters? Find out what is the ”consistent Akaike information criterion” or the ”Bayes

http://economics.sas.upenn.edu/~jesusfv/Chapter_4_Likelihood.pdf
http://ocw.mit.edu/courses/economics/14-384-time-series-analysis-fall-2008/lecture-notes/
http://www.karlwhelan.com/Teaching/MA%20Econometrics/part4.pdf


information criterion” and what they are used for. Compute one or the other, or both, and
discuss what they tell you about selecting between the two models.



Chapter 16

Bayesian methods

References I have used to prepare these notes: Cameron and Trivedi, Microeconometrics: Methods
and Applications, Chapter 13; Chernozhukov and Hong (2003), ”An MCMC approach to classical
estimation”, Journal of Econometrics; Gallant and Tauchen, ”EMM: A program for efficient method
of moments estimation”; Hoogerheide, van Dijk and van Oest (2007) ”Simulation Based Bayesian
Econometric Inference: Principles and Some Recent Computational Advances”. You might also like to
read See Mikusheva’s MIT OpenCourseWare notes, lectures 23, 24 and 25: Bayesian notes.

This chaper provides a brief introduction to Bayesian methods, which form a large part of econo-
metric research, especially in the last two decades. Advances in computational methods (e.g., MCMC,
particle filtering), combined with practical advantages of Bayesian methods (e.g., no need for mini-
mization and improved identification coming from the prior) have contributed to the popularity of this
approach.

472

http://ocw.mit.edu/courses/economics/14-384-time-series-analysis-fall-2008/lecture-notes/


16.1 Definitions

The Bayesian approach treats the parameter of a model as a random vector. The parameter has a
density, π(θ), which is known as the prior. It is assumed that the econometrician can provide this
density, which reflects current beliefs about the parameter.

We also have sample information, y={y1, y2, ...yn}. We’re already familiar with the likelihood
function, f(y|θ), which is the density of the sample given a parameter value.

Given these two pieces, we can write the joint density of the sample and the parameter:

f(y, θ) = f(y|θ)π(θ)

We can get the marginal likelihood by integrating out the parameter, integrating over its support Θ:

f(y) =
∫

Θ
f(y, θ)dθ

The last step is to get the posterior of the parameter. This is simply the density of the parameter
conditional on the sample, and we get it in the normal way we get a conditional density, using Bayes’
theorem

f(θ|y) = f(y, θ)
f(y) = f(y|θ)π(θ)

f(y)
The posterior reflects the learning that occurs about the parameter when one receives the sample
information. The sources of information used to make the posterior are the prior and the likelihood
function. Once we have the posterior, one can provide a complete probabilistic description about our
updated beliefs about the parameter, using quantiles or moments of the posterior. The posterior mean
or median provide the Bayesian analogue of the frequentist point estimator in the form of the ML



estimator. We can define regions analogous to confidence intervals by using quantiles of the posterior,
or the marginal posterior.

So far, this is pretty straightforward. The complications are often computational. To illustrate,
the posterior mean is

E(θ|y) =
∫

Θ
θf(θ|y)dθ =

∫
Θ θf(y|θ)π(θ)dθ∫

Θ f(y, θ)dθ
One can see that a means of integrating will be needed. Only in very special cases will the integrals
have analytic solutions. Otherwise, computational methods will be needed.

16.2 Philosophy, etc.

So, the classical paradigm views the data as generated by a data generating process, which is a perhaps
unknown model characterized by a parameter vector, and the data is generated from the model at a
particular value of the parameter vector. Bayesians view data as given, and update beliefs about a
random parameter using the information about the parameter contained in the data.

Bayesians and frequentists have a long tradition of arguing about the meaning and interpretation of
their respective procedures. Here’s my take on the debate. Fundamentally, I take the frequentist view:
I find it pleasing to think about a model with a fixed non-random parameter about which we would like
to learn. I like the idea of a point estimator that gives a best guess about the true parameter. However,
we shouldn’t reinvent the wheel each time we get a new sample: previous samples have information
about the parameter, and we should use all of the available information. A pure frequentist approach
would require writing the joint likelihood of all samples, which would almost certainly constitute an
impossible task. The Bayesian approach concentrates all of the information coming from previous
work in the form of a prior. A fairly simple, easy to use prior may not exactly capture all previous



information, but it could offer a handy and reasonably accurate summary. So, the idea of a prior as
a summary of what we have learned may simply be viewed as a practical solution to the problem of
using all the available information. Given that it’s a summary, one may as well use a convenient form,
as long as it’s plausible and the results don’t depend too exaggerately on the prior.

About the likelihood function, fortunately, Bayesians and frequentists are in agreement, so there’s
no need for further comment.

When we get to how to generate and interpret results, there is some divergence. Frequentists
maximize the likelihood function, and compute standard errors, etc., using the methods already ex-
plained in these notes. A frequentist could test the hypothesis that θ0 = θ∗ by seeing if the data are
sufficiently likely conditional on the parameter value θ∗. A Bayesian would check if θ∗ is a plausible
value conditional on the observed data.

I have criticized the frequentist practice of using only the current sample, ignoring what previous
work has told us about the parameter, simply because it’s too hard to write the overall joint likelihood
for all samples. So to be fair, here’s a criticism of the Bayesian approach. If we’re doing Bayesian
learning, what is it we’re learning about? If it’s not a fixed parameter value then what is it? What is
the process that generated the sample data? If the parameter is random, was the sample generated at a
single realization, or at many realizations? If we had an infinite sample, then the Bayesian estimators
(e.g., posterior mean or median) converge to a point. What is that point if it’s not the same true
parameter value that the frequentists are trying to estimate? Why would one use noninformative
priors for one’s whole career - don’t we believe what we learned from the last paper we wrote? These
questions often receive no answer, or obscure answers.

It turns out that one can analyze Bayesian estimators from a classical (frequentist) perspective.
It also turns out that Bayesian estimators may be easier to compute reliably than analogous classical



estimators. These computational advantages, combined with the ability to use information from
previous work in an intelligent way, make the study of Bayesian methods attractive for frequentists.
If a Bayesian takes the view that there is a fixed data generating process, and Bayesian learning leads
in the limit to the same fixed true value that frequentists posit, then the study of frequentist theory
will be useful to a Bayesian practitioner.

For the rest of this, I will adopt the classical, frequentist perspective, and study the behavior of
Bayesian estimators in this context.

16.3 Example

Suppose data is generated by i.i.d. sampling from an exponential distribution with mean θ. An
exponential random variable takes values on the positive real numbers. Waiting times are often
modeled using the exponential distribution.

• The density of a typical sample element is f(y|θ) = 1
θe
−y/θ. The likelihood is simply the product

of the sample contributions.

• Suppose the prior for θ is θ ∼lognormal(1,1). This means that the logarithm of θ is standard
normal. We use a lognormal prior because it enforces the requirement that the parameter of the
exponential density be positive.

• The Octave script BayesExample1.m implements Bayesian estimation for this setup.

• with a sample of 10 observations, we obtain the results in panel (a) of Figure 16.1, while with a
sample of size 50 we obtain the results in panel (b). Note how the posterior is more concentrated

http://pareto.uab.es/mcreel/Econometrics/Examples/Bayesian/BayesExample1.m


Figure 16.1: Bayesian estimation, exponential likelihood, lognormal prior
(a) N=10 (b) N=50

around the true parameter value in panel (b). Also note how the posterior mean is closer to
the prior mean when the sample is small. When the sample is small, the likelihood function has
less weight, and more of the information comes from the prior. When the sample is larger, the
likelihood function will have more weight, and its effect will dominate the prior’s.

16.4 Theory

Chernozhukov and Hong (2003) ”AnMCMCApproach to Classical Estimation” http://www.sciencedirect.
com/science/article/pii/S0304407603001003 is a very interesting article that shows how Bayesian
methods may be used with criterion functions that are associated with classical estimation techniques.
For example, it is possible to compute a posterior mean version of a GMM estimator. Chernozhukov
and Hong provide their Theorem 2, which proves consistency and asymptotic normality for a general

http://www.sciencedirect.com/science/article/pii/S0304407603001003
http://www.sciencedirect.com/science/article/pii/S0304407603001003


Figure 16.2: Chernozhukov and Hong, Theorem 2

class of such estimators. When the criterion function Ln(θ) in their paper is set to the log-likelihood
function, the pseudo-prior π(θ) is a real Bayesian prior, and the penalty function ρn is the squared
loss function (see the paper), then the class of estimators discussed by CH reduces to the ordinary
Bayesian posterior mean. As such, their Theorem 2, in Figure 16.2 tells us that this estimator is
consistent and asymptotically normally distributed. In particular, the Bayesian posterior mean has
the same asymptotic distribution as does the ordinary maximum likelihood estimator.

• the intuition is clear: as the amount of information coming from the sample increases, the
likelihood function brings an increasing amount of information relative to the prior. Eventually,
the prior is no longer important for determining the shape of the posterior.

• when the sample is large, the shape of the posterior depends on the likelihood function. The
likelihood function collapses around θ0 when the sample is generated at θ0. The same is true
of the posterior, it narrows around θ0. This causes the posterior mean to converge to the true
parameter value. In fact, all quantiles of the posterior converge to θ0. Chernozhukov and Hong



discuss estimators defined using quantiles.

• For an econometrician coming from the frequentist perspective, this is attractive. The Bayesian
estimator has the same asymptotic behavior as the MLE. There may be computational advan-
tages to using the Bayesian approach, because there is no need for optimization. If the objective
function that defines the classical estimator is irregular (multiple local optima, nondifferentia-
bilities, noncontinuities...), then optimization may be very difficult. However, Bayesian methods
that use integration may be more tractible. Tthis is the main motivation of CH’s paper. Addi-
tional advantages include the benefits if an informative prior is available. When this is the case,
the Bayesian estimator can have better small sample performance than the maximum likelihood
estimator.

16.5 Computational methods

• To compute the posterior mean, we need to evaluateE(θ|y) = ∫
Θ θf(θ|y)dθ = ∫

Θ θf(y|θ)π(θ)dθ/ ∫Θ f(y, θ)dθ.

• Note that both of the integrals are multiple integrals, with the dimension given by that of the
parameter, θ.

• Under some special circumstances, the integrals may have analytic solutions: e.g., Gaussian
likelihood with a Gaussian prior leads to a Gaussian posterior.

• When the dimension of the parameter is low, quadrature methods may be used. What was done
in as was done in BayesExample1.m is an unsophisticated example of this. More sophisticated

http://pareto.uab.es/mcreel/Econometrics/Examples/Bayesian/BayesExample1.m


methods use an intelligently chosen grid to reduce the number of function evaluations. Still,
these methods only work for dimensions up to 3 or so.

• Otherwise, some form of simulation-based ”Monte Carlo” integration must be used. The basic
idea is that E(θ|y) can be approximated by (1/S)∑S

s=1 θ
s, where θs is a random draw from the

posterior distribution f(θ|y). The trick is how to make draws from the posterior when in general
we can’t compute the posterior.

– the law of large numbers tells us that this average will converge to the desired expectation
as S gets large

– convergence will be more rapid if the random draws are independent of one another, but
insisting on independence may have computational drawbacks.

• Monte Carlo methods include importance sampling, Markov chain Monte Carlo (MCMC) and
sequential Monte Carlo (SMC, also known as particle filtering). The great expansion of these
methods over the years has caused Bayesian econometrics to become much more widely used
than it was in the not so distant (for some of us) past. There is much literature - here we will
only look at a basic example that captures the main ideas.

MCMC

Variants of Markov chain Monte Carlo have become a very widely used means of computing Bayesian
estimates. See Tierney (1994) ”Markov Chains for Exploring Posterior Distributions” Annals of Statis-
tics and Chib and Greenberg (1995) ”Understanding the Metropolis-Hastings algorithm” The American
Statistician.



Let’s consider the basic Metropolis-Hastings MCMC algorithm. We will generate a long realization
of a Markov chain process for θ, as follows:

The prior density is π(θ), as above. Let g(θ∗; θs) be a proposal density, which generates a new trial
parameter value θ∗ given the most recently accepted parameter value θs. A proposal will be accepted
if

f(θ∗|y)
f(θs|y)

g(θs; θ∗)
g(θ∗; θs) > α

where α is a U(0, 1) random variate.
There are two parts to the numerator and denominator: the posterior, and the proposal density.

• Focusing on the numerator, when the trial value of the proposal has a higher posterior, acceptance
is favored.

• The other factor is the density associated with returning to θs when starting at θ∗, which has
to do with the reversability of the Markov chain. If this is too low, acceptance is not favored.
We don’t want to jump to a new region if we will never get back, as we need to sample from the
entire support of the posterior.

• The two together mean that we will jump to a new area only if we are able to eventually jump
back with a reasonably high probability. The probability of jumping is higher when the new area
has a higher posterior density, but lower if it’s hard to get back.

• The idea is to sample from all regions of the posterior, those with high and low density, sampling
more heavily from regions of high density. We want to go occasionally to regions of low density,
but it is important not to get stuck there.



• Consider a bimodal density: we want to explore the area around both modes. To be able to
do that, it is important that the proposal density allows us to be able to jump between modes.
Understanding in detail why this makes sense is the tricky and elegant part of the theory, see
the references for more information.

• Note that the ratio of posteriors is equal to the ratio of likelihoods times the ratio of priors:

f(θ∗|y)
f(θs|y) = f(y|θ∗)

f(y|θs)
π(θ∗)
π(θs)

because the marginal likelihood f(y) is the same in both cases. We don’t need to compute that
integral! We don’t need to know the posterior, either. The acceptance criterion can be written
as: accept if

f(y|θ∗)
f(y|θs)

π(θ∗)
π(θs)

g(θs; θ∗)
g(θ∗; θs) > α

otherwise, reject

• From this, we see that the information needed to determine if a proposal is accepted or rejected
is the prior, the proposal density, and the likelihood function f(y|θ).

– in principle, the prior is non-negotiable. In practice, people often chose priors with conve-
nience in mind

– the likelihood function is what it is

– the place where artistry comes to bear is the choice of the proposal density

• the steps are:



1. the algorithm is initialized at some θ1

2. for s = 2, ..., S,

(a) draw θ∗ from g(θ∗; θs)

(b) according to the acceptance/rejection criterion, if the result is acceptance, set θs+1 = θ∗,
otherwise set θs+1 = θs

(c) iterate

• Once the chain is considered to have stabilized, say at iteration r, the values of θs for s > r are
taken to be draws from the posterior. The posterior mean is computed as the simple average of
the value. Quantiles, etc., can be computed in the appropriate fashion.

• the art of applying these methods consists of providing a good proposal density so that the
acceptance rate is reasonably high. Otherwise, the chain will be highly autocorrelated, with long
intervals where the same value of θ appears (many proposals rejected). There is a vast literature
on this, and the vastness of the literature should serve as a warning that getting this to work in
practice is not necessarily a simple matter. If it were, there would be fewer papers on the topic.

– too high acceptance rate: this is usually due to a proposal density that gives proposals very
close to the current value, e.g, a random walk with very low variance. This means that the
posterior is being explored inefficiently, we travel around through the support at a very low
rate, which means the chain will have to run for a long time to do a thorough exploration.

– too low acceptance rate: this means that the steps are too large, and we attempt to move to
low posterior density regions too frequently. The chain will become highly autocorrelated,



so long periods convey little additional information relative to a subset of the values in the
interval

• look at the example mh.m

16.6 Examples

MCMC for the simple example

The simple exponential example with lognormal prior can be implemented using MH MCMC, and
this is done in the Octave script BayesExample2.m . Play around with the sample size and the tuning
parameter, and note the effects on the computed posterior mean and on the acceptance rate. An
example of output is given in Figure 16.3. In that Figure, the chain shows relatively long periods of
rejection, meaning that the tuning parameter needs to be lowered, to cause the random walk to be a
little less random.

Bayesian VAR with Minnesota priors

Consider a VAR(p) model, where the data have been de-meaned:

yt = A1yt−1 + · · ·+ Apyt−p + εt

This follows an SUR structure, so OLS estimation is appropriate, even though we expect that V (εt) = Σ
is a full G×G matrix (heteroscedasticity and autocorrelation, which would normally lead on to think
of GLS estimation). As was previously noted, a problem with the estimation of this model is that

http://pareto.uab.es/mcreel/Econometrics/Examples/Bayesian/BayesExample2.m


Figure 16.3: Metropolis-Hastings MCMC, exponential likelihood, lognormal prior



the number of parameters increases rapidly in the number of lags, p. One can use Bayesian methods
such as the ”Minnesota prior” (Doan, T., Litterman, R., Sims, C. (1984). "Forecasting and conditional
projection using realistic prior distributions". Econometric Reviews 3: 1–100), which is a prior that
each variable separately follows a random walk (an AR(1) model with ρ = 1). The prior on A1 is that
it is an identity matrix, and the prior on the Aj, j > 1 is that they are zero matrices. This can be done
using stochastic restrictions similar to what was in the discussion of collinearity and ridge regression.
To be specific, note that the model can be written as

Y = Y−1A
′
1 + Y−2A

′
2 + · · ·+ Y−pA

′
p + E

where

Y =



y′1
y′2
...
y′n


is the n×G matrix of all the data, and the right hand side Y ′s are this matrix, lagged the indicated
number of times. The initial data with missing lags has been dropped, and n refers to the number of
complete observations, including all needed lags.

Exercise 63. Convince yourself that this matrix representation is the same as yt = A1yt−1 + · · · +
Apyt−p + εt, just writing all observations at once, and transposing.

Now, consider the prior that each variable separately follows a random walk. If this were exactly



true, then A1 = IG, and all the As = 0G, a G×G matrix of zeros, for s = 2, 3, ..., p. Consider the prior

A1 ∼ N(IG, σ2
1IG)

A2 ∼ N(0G, σ2
2IG)

...
Ap ∼ N(0G, σ2

pIG)

and all of the matrices of parameters are independent of one another. In the same way we formulated
the ridge regression estimator in Section 7.1, we can write the model and priors as



Y

IG

0G
...

0G


=



Y−1 Y−2 · · · Y−p
IG 0G · · · 0G
0G IG · · · 0G
... . . .

0G IG





A′1
A′2
...
A′p


+



E

v1

v2
...
vp



The final blocks may be multiplied by a prior precision, to enforce the prior to the desired degree, and
then estimation may be done using OLS, just as we did when introducing ordinary ridge regression.
This is a simple example of a Bayesian VAR: the VAR(p) model, combined with a certain prior (random
walk, and Gaussian prior), implemented using mixed estimation.

We have previously seen a simple RBC model, in Section 13.8. If you run rbc.mod using Dynare,
it will generate simulated data from this model. The data file rbcdata.m contains 400 observations
on consumption, investment and hours worked, generated by this model. The data are plotted in
Figure 16.4. Hours worked is quite stable around the steady state value of 1/3, but consumption

http://pareto.uab.es/mcreel/Econometrics/Examples/Bayesian/BVAR/rbc.mod
http://pareto.uab.es/mcreel/Econometrics/Examples/Bayesian/BVAR/rbcdata.m


and investment fluctuate a little more. Let’s estimate a Bayesian VAR, using this data. The script
EstimateBVAR.m gives the results

octave:1> EstimateBVAR
plain OLS results
A1
-0.463821 -9.234590 -10.554874
0.065112 1.650430 0.913775
0.300228 1.465854 2.509376
A2
1.47732 9.31190 10.57178
-0.18877 -1.20802 -1.30911
-0.10263 -0.64005 -0.78350
r-squares OLS fit: 0.98860 0.82362 0.79340
#################################
Minnesota prior results
A1
1.004195 0.037051 0.026717
-0.046089 0.706809 -0.273725
0.058231 0.160412 1.121387
A2
0.0066800 0.0739334 0.0674895
-0.0358829 -0.1631035 -0.1307285
0.0357671 0.1514610 0.1249041

http://pareto.uab.es/mcreel/Econometrics/Examples/Bayesian/BVAR/EstimateBVAR.m


Figure 16.4: Data from RBC model

r-squares Minnesota fit: 0.98859 0.82341 0.79320
Note how the R2s hardly change, but the estimated coefficients are much more similar to AR1 fits.

The prior seems to be imposing discipline on the coefficients, without affecting goodness of fit in any
serious way. Having a look at the residuals, see Figure 16.5. Note that the residuals for investment
and hours are obviously very highly correlated. This is because the model that generated the data
contains only one shock (a technology shock), so the stochastic behavior of the variables is necessarily
fairly tightly linked.



16.5
Figure 16.5: BVAR residuals, with separation



Bayesian estimation of DSGE model

In Section 13.8, a simple DSGE model was estimated by ML. EstimateRBC_Bayesian.mod is a Dynare
.mod file that lets you do the same thing using Bayesian methods, with MCMC.

• ML is not able to successfully estimate all parameters

• The Bayesian method does manage to estimate all parameters: the prior is helping

• note that the posterior is substantially different than the prior: we learn a lot from the sample

• both ML and Bayesian are using the same likelihood function, calculated using Kalman filtering
on a linearized model, assuming Gaussian errors.

• if the model is solved using a higher order solution, the Kalman filter cannot be used, and Dynare
uses particle filtering instead. This is very time consuming, as you can check.

Another example of Bayesian estimation of a DSGE model is given in Section 22.6.

http://pareto.uab.es/mcreel/Econometrics/Examples/RBC/EstimateRBC_Bayesian.mod


16.7 Exercises

1. Experiment with the examples to learn about tuning, etc.



Chapter 17

Introduction to panel data

Reference: Cameron and Trivedi, 2005, Microeconometrics: Methods and Applications, Part V, Chap-
ters 21 and 22 (plus 23 if you have special interest in the topic). The GRETL manual, chapters 16
and 17 is also a nice reference.

In this chapter we’ll look at panel data. Panel data is an important area in applied econometrics,
simply because much of the available data has this structure. Also, it provides an example where things
we’ve already studied (GLS, endogeneity, GMM, Hausman test) come into play. There has been much
work in this area, and the intention is not to give a complete overview, but rather to highlight the
issues and see how the tools we have studied can be applied.

17.1 Generalities

Panel data combines cross sectional and time series data: we have a time series for each of the
agents observed in a cross section. The addition of temporal information can in principle allow us to
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investigate issues such as persistence, habit formation, and dynamics. Starting from the perspective
of a single time series, the addition of cross-sectional information allows investigation of heterogeneity.
In both cases, if parameters are common across units or over time, the additional data allows for more
precise estimation.

The basic idea is to allow variables to have two indices, i = 1, 2, ..., n and t = 1, 2, ..., T . The simple
linear model

yi = α + xiβ + εi

becomes
yit = α + xitβ + εit

We could think of allowing the parameters to change over time and over cross sectional units. This
would give

yit = αit + xitβit + εit

The problem here is that there are more parameters than observations, so the model is not identified.
We need some restraint! The proper restrictions to use of course depend on the problem at hand, and
a single model is unlikely to be appropriate for all situations. For example, one could have time and
cross-sectional dummies, and slopes that vary by time:

yit = αi + αt + xitβt + εit

There is a lot of room for playing around here. We also need to consider whether or not n and T are
fixed or growing. We’ll need at least one of them to be growing in order to do asymptotics.

To provide some focus, we’ll consider common slope parameters, but agent-specific intercepts,



which:
yit = αi + xitβ + εit (17.1)

I will refer to this as the ”simple linear panel model”. This is the model most often encountered in the
applied literature. It is like the original cross-sectional model, in that the β′s are constant over time
for all i. However we’re now allowing for the constant to vary across i (some individual heterogeneity).
The β′s are fixed over time, which is a testable restriction, of course. We can consider what happens
as n → ∞ but T is fixed. This would be relevant for microeconometric panels, (e.g., the PSID data)
where a survey of a large number of individuals may be done for a limited number of time periods.
Macroeconometric applications might look at longer time series for a small number of cross-sectional
units (e.g., 40 years of quarterly data for 15 European countries). For that case, we could keep n

fixed (seems appropriate when dealing with the EU countries), and do asymptotics as T increases, as
is normal for time series. The asymptotic results depend on how we do this, of course.

Why bother using panel data, what are the benefits? The model

yit = αi + xitβ + εit

is a restricted version of
yit = αi + xitβi + εit

which could be estimated for each i in turn. Why use the panel approach?

• Because the restrictions that βi = βj = ... = β, if true, lead to more efficient estimation.
Estimation for each i in turn will be very uninformative if T is small.

• Another reason is that panel data allows us to estimate parameters that are not identified by



cross sectional (time series) data. For example, if the model is

yit = αi + αt + xitβt + εit

and we have only cross sectional data, we cannot estimate the αi. If we have only time series
data on a single cross sectional unit i = 1, we cannot estimate the αt. Cross-sectional variation
allows us to estimate parameters indexed by time, and time series variation allows us to estimate
parameters indexed by cross-sectional unit. Parameters indexed by both i and t will require
other forms of restrictions in order to be estimable.

The main issues are:

• can β be estimated consistently? This is almost always a goal.

• can the αi be estimated consistently? This is often of secondary interest.

• sometimes, we’re interested in estimating the distribution of αi across i.

• are the αi correlated with xit?

• does the presence of αi complicate estimation of β?

• what about the covariance stucture? We’re likely to have HET and AUT, so GLS issue will
probably be relevant. Potential for efficiency gains.

17.2 Static models and correlations between variables

To begin with, assume that:



• the xit are weakly exogenous variables (uncorrelated with εit)

• the model is static: xit does not contain lags of yit.

• then the basic problem we have in the panel data model yit = αi + xitβ + εit is the presence
of the αi. These are individual-specific parameters. Or, possibly more accurately, they can be
thought of as individual-specific variables that are not observed (latent variables). The reason
for thinking of them as variables is because the agent may choose their values following some
process.

Define α = E(αi), so E(αi − α) = 0. Our model yit = αi + xitβ + εit may be written

yit = αi + xitβ + εit

= α + xitβ + (αi − α + εit)
= α + xitβ + ηit

Note that E(ηit) = 0. A way of thinking about the data generating process is this:

• First, αi is drawn, either in turn from the set of n fixed values, or randomly

• then x is drawn from fX(z|αi).

• In either case, the important point is that the distribution of x may vary depending on the
realization of αi.

– Thus, there may be correlation between αi and xit, which means that E(xitηit) 6=0 in the
above equation.



– This means that OLS estimation of the model would lead to biased and inconsistent esti-
mates.

– However, it is possible (but unlikely for economic data) that xit and ηit are independent or
at least uncorrelated, if the distribution of xit is constant with respect to the realization of
αi. In this case OLS estimation would be consistent.

Fixed effects: when E(xitηit) 6=0, the model is called the ”fixed effects model”
Random effects: when E(xitηit) = 0, the model is called the ”random effects model”.
I find this to be pretty poor nomenclature, because the issue is not whether ”effects” are fixed or

random (they are always random, unconditional on i). The issue is whether or not the ”effects” are
correlated with the other regressors. In economics, it seems likely that the unobserved variable α is
probably correlated with the observed regressors, x (this is simply the presence of collinearity between
observed and unobserved variables, and collinearity is usually the rule rather than the exception).
So, we expect that the ”fixed effects” model is probably the relevant one unless special circumstances
mean that the αi are uncorrelated with the xit.

17.3 Estimation of the simple linear panel model

”Fixed effects”: The ”within” estimator

How can we estimate the parameters of the simple linear panel model (equation 17.1) and what
properties do the estimators have? First, we assume that the αi are correlated with the xit (”fixed
effects” model ). The model can be written as yit = α+ xitβ + ηit, and we have that E(xitηit) 6=0. As
such, OLS estimation of this model will give biased an inconsistent estimated of the parameters α and



β. The ”within” estimator is a solution - this involves subtracting the time series average from each
cross sectional unit.

xi = 1
T

T∑
t=1

xit

εi = 1
T

T∑
t=1

εit

yi = 1
T

T∑
t=1

yit = αi + 1
T

T∑
t=1

xitβ + 1
T

T∑
t=1

εit

yi = αi + xiβ + εi (17.2)

The transformed model is

yit − yi = αi + xitβ + εit − αi − xiβ − εi (17.3)
y∗it = x∗itβ + ε∗it

where x∗it = xit − xi and ε∗it = εit − εi. In this model, it is clear that x∗it and ε∗it are uncorrelated,
as long as the original regressors xit are strongly exogenous with respect to the original error εit
(E(xitεis) = 0, ∀t, s). In this case, OLS will give consistent estimates of the parameters of this model,
β.

What about the αi? Can they be consistently estimated? An estimator is

α̂i = 1
T

T∑
t=1

(
yit − xitβ̂

)

It’s fairly obvious that this is a consistent estimator if T → ∞. For a short panel with fixed T, this



estimator is not consistent. Nevertheless, the variation in the α̂i can be fairly informative about the
heterogeneity. A couple of notes:

• an equivalent approach is to estimate the model

yit =
n∑
j=1

dj,itαi + xitβ + εit

by OLS. The dj, j = 1, 2, ..., n are n dummy variables that take on the value 1 if j = i, zero
otherwise. They are indicators of the cross sectional unit of the observation. (Write out form
of regressor matrix on blackboard). Estimating this model by OLS gives numerically exactly
the same results as the ”within” estimator, and you get the α̂i automatically. See Cameron and
Trivedi, section 21.6.4 for details. An interesting and important result known as the Frisch-
Waugh-Lovell Theorem can be used to show that the two means of estimation give identical
results.

• This last expression makes it clear why the ”within” estimator cannot estimate slope coefficients
corresponding to variables that have no time variation. Such variables are perfectly collinear
with the cross sectional dummies dj. The corresponding coefficients are not identified.

• OLS estimation of the ”within” model is consistent, but probably not efficient, because it is
highly probable that the εit are not iid. There is very likely heteroscedasticity across the i and
autocorrelation between the T observations corresponding to a given i. One needs to estimate
the covariance matrix of the parameter estimates taking this into account. It is possible to
use GLS corrections if you make assumptions regarding the het. and autocor. Quasi-GLS,
using a possibly misspecified model of the error covariance, can lead to more efficient estimates



than simple OLS. One can then combine it with subsequent panel-robust covariance estimation
to deal with the misspecification of the error covariance, which would invalidate inferences if
ignored. The White heteroscedasticity consistent covariance estimator is easily extended to
panel data with independence across i, but with heteroscedasticity and autocorrelation within i,
and heteroscedasticity between i. See Cameron and Trivedi, Section 21.2.3.

Estimation with random effects

The original model is
yit = αi + xitβ + εit

This can be written as

yit = α + xitβ + (αi − α + εit)
yit = α + xitβ + ηit (17.4)

where E(ηit) = 0, and E(xitηit) = 0. As such, the OLS estimator of this model is consistent. We can
recover estimates of the αi as discussed above. It is to be noted that the error ηit is almost certainly
heteroscedastic and autocorrelated, so OLS will not be efficient, and inferences based on OLS need to
be done taking this into account. One could attempt to use GLS, or panel-robust covariance matrix
estimation, or both, as above.

There are other estimators when we have random effects, a well-known example being the ”between”
estimator, which operates on the time averages of the cross sectional units. There is no advantage to
doing this, as the overall estimator is already consistent, and averaging looses information (efficiency
loss). One would still need to deal with cross sectional heteroscedasticity when using the between



estimator, so there is no gain in simplicity, either.
It is to be emphasized that ”random effects” is not a plausible assumption with most economic data,

so use of this estimator is discouraged, even if your statistical package offers it as an option. Think
carefully about whether the assumption is warranted before trusting the results of this estimator.

Hausman test

Suppose you’re doubting about whether fixed or random effects are present.

• If we have correlation between xit and αi (fixed effects), then the ”within” estimator will be
consistent, but the random effects estimator of the previous section will not.

• Evidence that the two estimators are converging to different limits is evidence in favor of fixed
effects, not random effects.

• A Hausman test statistic can be computed, using the difference between the two estimators.

– The null hypothesis is that the effects are uncorrelated with the regressors in xit (”random
effects”) so that both estimators are consistent under the null.

– When the test rejects, we conclude that fixed effects are present, so the ”within” estimator
should be used.

– Now, what happens if the test does not reject? One could optimistically turn to the random
effects model, but it’s probably more realistic to conclude that the test may have low power.
Failure to reject does not mean that the null hypothesis is true. After all, estimation of
the covariance matrices needed to compute the Hausman test is a non-trivial issue, and is
a source of considerable noise in the test statistic (noise=low power).



– Finally, the simple version of the Hausman test requires that the estimator under the null be
fully efficient. Achieving this goal is probably a utopian prospect. A conservative approach
would acknowledge that neither estimator is likely to be efficient, and to operate accordingly.
I have a little paper on this topic, Creel, Applied Economics, 2004. See also Cameron and
Trivedi, section 21.4.3.

In class, do the first part of the example, below.

17.4 Dynamic panel data

When we have panel data, we have information on both yit as well as yi,t−1. One may naturally think
of including yi,t−1 as a regressor, to capture dynamic effects that can’t be analyed with only cross-
sectional data. Excluding dynamic effects is often the reason for detection of spurious AUT of the
errors. With dynamics, there is likely to be less of a problem of autocorrelation, but one should still be
concerned that some might still be present. The model, using a single lag of the dependent variable,
becomes

yit = αi + γyi,t−1 + xitβ + εit

yit = α + γyi,t−1 + xitβ + (αi − α + εit)
yit = α + γyi,t−1 + xitβ + ηit

We assume that the xit are uncorrelated with εit.

• Note that αi is a component that determines both yit and its lag, yi,t−1. Thus, αi and yi,t−1 are
correlated, even if the αi are pure random effects (uncorrelated with xit).



• So, yi,t−1 is correlated with ηit.

• For this reason, OLS estimation is inconsistent even for the random effects model, and it’s also
of course still inconsistent for the fixed effects model.

• When regressors are correlated with the errors, the natural thing to do is start thinking of
instrumental variables estimation, or GMM.

To illustrate, consider a simple linear dynamic panel model

yit = αi + φ0yit−1 + εit (17.5)

where εit ∼ N(0, 1), αi ∼ N(0, 1), φ0 = 0, 0.3, 0.6, 0.9 and αi and εi are independently distributed.
Tables 17.1 and 17.2 present bias and RMSE for the ”within” estimator (labeled as ML) and some
simulation-based estimators. Note that the ”within” estimator is very biased, and has a large RMSE.
The overidentified SBIL estimator (see Creel and Kristensen, ”Indirect Likelihood Inference”) has the
lowest RMSE. Simulation-based estimators are discussed in a later Chapter. Perhaps these results will
stimulate your interest.



Table 17.1: Dynamic panel data model. Bias. Source for ML and II is Gouriéroux, Phillips and Yu,
2010, Table 2. SBIL, SMIL and II are exactly identified, using the ML auxiliary statistic. SBIL(OI)
and SMIL(OI) are overidentified, using both the naive and ML auxiliary statistics.

T N φ ML II SBIL SBIL(OI)
5 100 0.0 -0.199 0.001 0.004 -0.000
5 100 0.3 -0.274 -0.001 0.003 -0.001
5 100 0.6 -0.362 0.000 0.004 -0.001
5 100 0.9 -0.464 0.000 -0.022 -0.000
5 200 0.0 -0.200 0.000 0.001 0.000
5 200 0.3 -0.275 -0.010 0.001 -0.001
5 200 0.6 -0.363 -0.000 0.001 -0.001
5 200 0.9 -0.465 -0.003 -0.010 0.001

Table 17.2: Dynamic panel data model. RMSE. Source for ML and II is Gouriéroux, Phillips and Yu,
2010, Table 2. SBIL, SMIL and II are exactly identified, using the ML auxiliary statistic. SBIL(OI)
and SMIL(OI) are overidentified, using both the naive and ML auxiliary statistics.

T N φ ML II SBIL SBIL(OI)
5 100 0.0 0.204 0.057 0.059 0.044
5 100 0.3 0.278 0.081 0.065 0.041
5 100 0.6 0.365 0.070 0.071 0.036
5 100 0.9 0.467 0.076 0.059 0.033
5 200 0.0 0.203 0.041 0.041 0.031
5 200 0.3 0.277 0.074 0.046 0.029
5 200 0.6 0.365 0.050 0.050 0.025
5 200 0.9 0.467 0.054 0.046 0.027



Arellano-Bond estimator

The first thing is to realize that the αi that are a component of the error are correlated with all
regressors in the general case of fixed effects. Getting rid of the αi is a step in the direction of solving
the problem. We could subtract the time averages, as above for the ”within” estimator, but this
would give us problems later when we need to define instruments. Instead, consider the model in first
differences

yit − yi,t−1 = (αi + γyi,t−1 + xitβ + εit)− (αi + γyi,t−2 + xi,t−1β + εi,t−1)
= γ (yi,t−1 − yi,t−2) + (xit − xi,t−1) β + εit − εi,t−1

or
∆yit = γ∆yi,t−1 + ∆xitβ + ∆εit

• Now the pesky αi are no longer in the picture.

• Note that we loose one observation when doing first differencing.

• OLS estimation of this model will still be inconsistent, because yi,t−1is clearly correlated with
εi,t−1.

• Note also that the error ∆εit is serially correlated even if the εit are not.

• There is no problem of correlation between ∆xit and ∆εit. Thus, to do GMM, we need to find
instruments for ∆yi,t−1, but the variables in ∆xit can serve as their own instruments.

How about using yi.t−2 as an instrument?



• It is clearly correlated with ∆yi,t−1 = (yi,t−1 − yi,t−2)

• as long as the εit are not serially correlated, then yi.t−2 is not correlated with ∆εit = εit − εi,t−1.

• We can also use additional lags yi.t−s, s ≥ 2 to increase efficiency, because GMM with additional
instruments is asymptotically more efficient than with less instruments (but small sample bias
may become a serious problem).

This sort of estimator is widely known in the literature as an Arellano-Bond estimator, due to the
influential 1991 paper of Arellano and Bond (1991).

• Note that this sort of estimators requires T = 3 at a minimum.

• For t = 1 and t = 2, we cannot compute the moment conditions.

– for t = 1, we do not have yi,t−1 = yi,0, so we can’t compute dependent variable.

– for t = 2, we can compute the dependent variable ∆yi2, but not the regressor ∆yi,2−1 =
yi,1 − yi,0.

• for t = 3, we can compute the dep. var. ∆yi,3, the regressor ∆yi,2 = yi,2 − yi,1, and we have yi,1,
to serve as an instrument for ∆yi,2

• If T > 3, then when t = 4, we can use both yi,1 and yi,2 as instruments. This sort of unbalanced-
ness in the instruments requires a bit of care when programming. Also, additional instruments
increase asymptotic efficiency but can lead to increased small sample bias, so one should be a
little careful with using too many instruments. Some robustness checks, looking at the stability
of the estimates are a way to proceed.



One should note that serial correlation of the εit will cause this estimator to be inconsistent. Serial
correlation of the errors may be due to dynamic misspecification, and this can be solved by including
additional lags of the dependent variable. However, serial correlation may also be due to factors not
captured in lags of the dependent variable. If this is a possibility, then the validity of the Arellano-Bond
type instruments is in question.

• A final note is that the error ∆εit is serially correlated even when the εit are not, and very likely
heteroscedastic across i. One needs to take this into account when computing the covariance of
the GMM estimator. One can also attempt to use GLS style weighting to improve efficiency.
There are many possibilities.

• there is a ”system” version of this sort of estimator that adds additional moment conditions, to
improve efficiency

17.5 Example

Use the GRETL data set abdata.gdt to illustrate fixed effects, random effects, and DPD estimation
For FE and RE, use the model

nit = αi + βt + γwit + δkit + φysit + εit

• do residuals appear to be normally distributed?

• is there evidence of serial correlation of residuals? (save them, and run an AR1 on them)



• Hausman test: rejects RE: we should favor FE. However, if errors are not normal, or if there is
serial correlation, the test is not valid. Nevertheless, FE is probably favored on strictly theoretical
grounds.

Given that the residuals seem to be serially correlated, we need to introduce dynamic structure. For
DPD, use the model

nit = αi + βt + ρ1ni,t−1 + γwit + δkit + φysit + εit

• the estimate of ρ1 is economically and statistically significant

• note the important differences in the other coefficients compared to the FE model

• check the serial correlation of the residuals: if it exists, the instruments are not valid. Possible
solution is to augment the AR order, but the sample size gets smaller with every additional lag.

17.6 Exercises

1. In the context of a dynamic model with fixed effects, why is the differencing used in the ”within”
estimation approach (equation 17.3) problematic? That is, why does the Arellano-Bond estima-
tor operate on the model in first differences instead of using the within approach?

2. Consider the simple linear panel data model with random effects (equation 17.4). Suppose that
the εit are independent across cross sectional units, so that E(εitεjs) = 0, i 6= j, ∀t, s. With a
cross sectional unit, the errors are independently and identically distributed, so E(ε2it) = σ2

i , but
E(εitεis) = 0, t 6= s. More compactly, let εi =

[
εi1 εi2 · · · εiT

]′
. Then the assumptions are

that E(εiε′i) = σ2
i IT , and E(εiε′j) = 0, i 6= j.



(a) write out the form of the entire covariance matrix (nT ×nT ) of all errors, Σ = E(εε′), where
ε =

[
ε′1 ε′2 · · · ε′T

]′
is the column vector of nT errors.

(b) suppose that n is fixed, and consider asymptotics as T grows. Is it possible to estimate the
Σi consistently? If so, how?

(c) suppose that T is fixed, and consider asymptotics an n grows. Is it possible to estimate the
Σi consistently? If so, how?

(d) For one of the two preceeding parts (b) and (c), consistent estimation is possible. For that
case, outline how to do ”within” estimation using a GLS correction.



Chapter 18

Quasi-ML

Quasi-ML is the estimator one obtains when a misspecified probability model is used to calculate an
”ML” estimator.

Given a sample of size n of a random vector y and a vector of conditioning variables x, suppose the
joint density of Y =

(
y1 . . . yn

)
conditional on X =

(
x1 . . . xn

)
is a member of the parametric

family pY(Y|X, ρ), ρ ∈ Ξ. The true joint density is associated with the vector ρ0 :

pY(Y|X, ρ0).

As long as the marginal density of X doesn’t depend on ρ0, this conditional density fully characterizes
the random characteristics of samples: i.e., it fully describes the probabilistically important features
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of the d.g.p. The likelihood function is just this density evaluated at other values ρ

L(Y|X, ρ) = pY(Y|X, ρ), ρ ∈ Ξ.

• Let Yt−1 =
(

y1 . . . yt−1

)
, Y0 = 0, and let Xt =

(
x1 . . . xt

)
The likelihood function,

taking into account possible dependence of observations, can be written as

L(Y|X, ρ) =
n∏
t=1

pt(yt|Yt−1,Xt, ρ)

≡
n∏
t=1

pt(ρ)

• The average log-likelihood function is:

sn(ρ) = 1
n

lnL(Y|X, ρ) = 1
n

n∑
t=1

ln pt(ρ)

• Suppose that we do not have knowledge of the family of densities pt(ρ). Mistakenly, we may
assume that the conditional density of yt is a member of the family ft(yt|Yt−1,Xt, θ), θ ∈ Θ,
where there is no θ0 such that ft(yt|Yt−1,Xt, θ

0) = pt(yt|Yt−1,Xt, ρ
0),∀t (this is what we mean

by “misspecified”).

• This setup allows for heterogeneous time series data, with dynamic misspecification.

The QML estimator is the argument that maximizes the misspecified average log likelihood, which



we refer to as the quasi-log likelihood function. This objective function is

sn(θ) = 1
n

n∑
t=1

ln ft(yt|Yt−1,Xt, θ
0)

≡ 1
n

n∑
t=1

ln ft(θ)

and the QML is
θ̂n = arg max

Θ
sn(θ)

A SLLN for dependent sequences applies (we assume), so that

sn(θ) a.s.→ lim
n→∞ E

1
n

n∑
t=1

ln ft(θ) ≡ s∞(θ)

We assume that this can be strengthened to uniform convergence, a.s., following the previous argu-
ments. The “pseudo-true” value of θ is the value that maximizes s̄(θ):

θ0 = arg max
Θ

s∞(θ)

Given assumptions so that theorem 29 is applicable, we obtain

lim
n→∞ θ̂n = θ0, a.s.

• Applying the asymptotic normality theorem,

√
n
(
θ̂ − θ0

)
d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1]



where
J∞(θ0) = lim

n→∞ ED
2
θsn(θ0)

and
I∞(θ0) = lim

n→∞V ar
√
nDθsn(θ0).

• Note that asymptotic normality only requires that the additional assumptions regarding J and
I hold in a neighborhood of θ0 for J and at θ0, for I, not throughout Θ. In this sense, asymptotic
normality is a local property.

18.1 Consistent Estimation of Variance Components

Consistent estimation of J∞(θ0) is straightforward. Assumption (b) of Theorem 31 implies that

Jn(θ̂n) = 1
n

n∑
t=1

D2
θ ln ft(θ̂n) a.s.→ lim

n→∞ E
1
n

n∑
t=1

D2
θ ln ft(θ0) = J∞(θ0).

That is, just calculate the Hessian using the estimate θ̂n in place of θ0.

Consistent estimation of I∞(θ0) is more difficult, and may be impossible.

• Notation: Let gt ≡ Dθft(θ0)



We need to estimate

I∞(θ0) = lim
n→∞V ar

√
nDθsn(θ0)

= lim
n→∞V ar

√
n

1
n

n∑
t=1

Dθ ln ft(θ0)

= lim
n→∞

1
n
V ar

n∑
t=1

gt

= lim
n→∞

1
n
E

 n∑
t=1

(gt − Egt)
 n∑

t=1
(gt − Egt)

′
This is going to contain a term

lim
n→∞

1
n

n∑
t=1

(Egt) (Egt)′

which will not tend to zero, in general. This term is not consistently estimable in general, since it
requires calculating an expectation using the true density under the d.g.p., which is unknown.

• There are important cases where I∞(θ0) is consistently estimable. For example, suppose that
the data come from a random sample (i.e., they are iid). This would be the case with cross
sectional data, for example. (Note: under i.i.d. sampling, the joint distribution of (yt, xt) is
identical. This does not imply that the conditional density f(yt|xt) is identical).

• With random sampling, the limiting objective function is simply

s∞(θ0) = EXE0 ln f(y|x, θ0)

where E0 means expectation of y|x and EX means expectation respect to the marginal density of
x.



• By the requirement that the limiting objective function be maximized at θ0 we have

DθEXE0 ln f(y|x, θ0) = Dθs∞(θ0) = 0

• The dominated convergence theorem allows switching the order of expectation and differentia-
tion, so

DθEXE0 ln f(y|x, θ0) = EXE0Dθ ln f(y|x, θ0) = 0

The CLT implies that
1√
n

n∑
t=1

Dθ ln f(y|x, θ0) d→ N(0, I∞(θ0)).

That is, it’s not necessary to subtract the individual means, since they are zero. Given this, and
due to independent observations, a consistent estimator is

Î = 1
n

n∑
t=1

Dθ ln ft(θ̂)Dθ′ ln ft(θ̂)

This is an important case where consistent estimation of the covariance matrix is possible. Other cases
exist, even for dynamically misspecified time series models.

18.2 Example: the MEPS Data

To check the plausibility of the Poisson model for the MEPS data, we can compare the sample
unconditional variance with the estimated unconditional variance according to the Poisson model:
V̂ (y) =

∑n
t=1 λ̂t
n . Using the program PoissonVariance.m, for OBDV and ERV, we get the results in

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-I/PoissonVariance.m


Table 18.1. We see that even after conditioning, the overdispersion is not captured in either case.

Table 18.1: Marginal Variances, Sample and Estimated (Poisson)

OBDV ERV
Sample 38.09 0.151

Estimated 3.28 0.086

There is huge problem with OBDV, and a significant problem with ERV. In both cases the Poisson
model does not appear to be plausible. You can check this for the other use measures if you like.

Infinite mixture models: the negative binomial model

Reference: Cameron and Trivedi (1998) Regression analysis of count data, chapter 4.
The two measures seem to exhibit extra-Poisson variation. To capture unobserved heterogeneity,

a possibility is the random parameters approach. Consider the possibility that the constant term in a
Poisson model were random:

fY (y|x, ε) = exp(−θ)θy
y!

θ = exp(x′β + ε)
= exp(x′β) exp(ε)
= λν

where λ = exp(x′β) and ν = exp(ε). Now ν captures the randomness in the constant. The problem



is that we don’t observe ν, so we will need to marginalize it to get a usable density

fY (y|x) =
∫ ∞
−∞

exp[−θ]θy
y! fv(z)dz

This density can be used directly, perhaps using numerical integration to evaluate the likelihood
function. In some cases, though, the integral will have an analytic solution. For example, if ν follows
a certain one parameter gamma density, then

fY (y|x, φ) = Γ(y + ψ)
Γ(y + 1)Γ(ψ)

(
ψ

ψ + λ

)ψ ( λ

ψ + λ

)y
(18.1)

where φ = (λ, ψ). ψ appears since it is the parameter of the gamma density.

• For this density, E(y|x) = λ, which we have parameterized λ = exp(x′β)

• The variance depends upon how ψ is parameterized.

– If ψ = λ/α, where α > 0, then V (y|x) = λ + αλ. Note that λ is a function of x, so that
the variance is too. This is referred to as the NB-I model.

– If ψ = 1/α, where α > 0, then V (y|x) = λ+ αλ2. This is referred to as the NB-II model.

So both forms of the NB model allow for overdispersion, with the NB-II model allowing for a more
radical form.

Testing reduction of a NB model to a Poisson model cannot be done by testing α = 0 using standard
Wald or LR procedures. The critical values need to be adjusted to account for the fact that α = 0 is
on the boundary of the parameter space. Without getting into details, suppose that the data were in



fact Poisson, so there is equidispersion and the true α = 0. Then about half the time the sample data
will be underdispersed, and about half the time overdispersed. When the data is underdispersed, the
MLE of α will be α̂ = 0. Thus, under the null, there will be a probability spike in the asymptotic
distribution of

√
n(α̂− α) =

√
nα̂ at 0, so standard testing methods will not be valid.

This program will do estimation using the NB model. Note how modelargs is used to select a NB-I
or NB-II density. Here are NB-I estimation results for OBDV:

MPITB extensions found

OBDV

======================================================
BFGSMIN final results

Used analytic gradient

------------------------------------------------------
STRONG CONVERGENCE
Function conv 1 Param conv 1 Gradient conv 1
------------------------------------------------------
Objective function value 2.18573
Stepsize 0.0007
17 iterations
------------------------------------------------------

param gradient change
1.0965 0.0000 -0.0000

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-II/EstimateNegBin.m


0.2551 -0.0000 0.0000
0.2024 -0.0000 0.0000
0.2289 0.0000 -0.0000
0.1969 0.0000 -0.0000
0.0769 0.0000 -0.0000
0.0000 -0.0000 0.0000
1.7146 -0.0000 0.0000

******************************************************
Negative Binomial model, MEPS 1996 full data set

MLE Estimation Results
BFGS convergence: Normal convergence

Average Log-L: -2.185730
Observations: 4564

estimate st. err t-stat p-value
constant -0.523 0.104 -5.005 0.000
pub. ins. 0.765 0.054 14.198 0.000
priv. ins. 0.451 0.049 9.196 0.000
sex 0.458 0.034 13.512 0.000
age 0.016 0.001 11.869 0.000
edu 0.027 0.007 3.979 0.000
inc 0.000 0.000 0.000 1.000
alpha 5.555 0.296 18.752 0.000

Information Criteria



CAIC : 20026.7513 Avg. CAIC: 4.3880
BIC : 20018.7513 Avg. BIC: 4.3862
AIC : 19967.3437 Avg. AIC: 4.3750

******************************************************

Note that the parameter values of the last BFGS iteration are different that those reported in the
final results. This reflects two things - first, the data were scaled before doing the BFGS minimiza-
tion, but the mle_results script takes this into account and reports the results using the original
scaling. But also, the parameterization α = exp(α∗) is used to enforce the restriction that α > 0.
The unrestricted parameter α∗ = logα is used to define the log-likelihood function, since the BFGS
minimization algorithm does not do contrained minimization. To get the standard error and t-statistic
of the estimate of α, we need to use the delta method. This is done inside mle_results, making use
of the function parameterize.m .

Likewise, here are NB-II results:

MPITB extensions found

OBDV

======================================================
BFGSMIN final results

Used analytic gradient

------------------------------------------------------

http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/parameterize.m


STRONG CONVERGENCE
Function conv 1 Param conv 1 Gradient conv 1
------------------------------------------------------
Objective function value 2.18496
Stepsize 0.0104394
13 iterations
------------------------------------------------------

param gradient change
1.0375 0.0000 -0.0000
0.3673 -0.0000 0.0000
0.2136 0.0000 -0.0000
0.2816 0.0000 -0.0000
0.3027 0.0000 0.0000
0.0843 -0.0000 0.0000
-0.0048 0.0000 -0.0000
0.4780 -0.0000 0.0000

******************************************************
Negative Binomial model, MEPS 1996 full data set

MLE Estimation Results
BFGS convergence: Normal convergence

Average Log-L: -2.184962
Observations: 4564

estimate st. err t-stat p-value



constant -1.068 0.161 -6.622 0.000
pub. ins. 1.101 0.095 11.611 0.000
priv. ins. 0.476 0.081 5.880 0.000
sex 0.564 0.050 11.166 0.000
age 0.025 0.002 12.240 0.000
edu 0.029 0.009 3.106 0.002
inc -0.000 0.000 -0.176 0.861
alpha 1.613 0.055 29.099 0.000

Information Criteria
CAIC : 20019.7439 Avg. CAIC: 4.3864
BIC : 20011.7439 Avg. BIC: 4.3847
AIC : 19960.3362 Avg. AIC: 4.3734

******************************************************

• For the OBDV usage measurel, the NB-II model does a slightly better job than the NB-I model, in
terms of the average log-likelihood and the information criteria (more on this last in a moment).

• Note that both versions of the NB model fit much better than does the Poisson model (see 11.4).

• The estimated α is highly significant.

To check the plausibility of the NB-II model, we can compare the sample unconditional variance
with the estimated unconditional variance according to the NB-II model: V̂ (y) =

∑n
t=1 λ̂t+α̂(λ̂t)

2

n . For
OBDV and ERV (estimation results not reported), we get For OBDV, the overdispersion problem is
significantly better than in the Poisson case, but there is still some that is not captured. For ERV,
the negative binomial model seems to capture the overdispersion adequately.



Table 18.2: Marginal Variances, Sample and Estimated (NB-II)

OBDV ERV
Sample 38.09 0.151

Estimated 30.58 0.182

Finite mixture models: the mixed negative binomial model

The finite mixture approach to fitting health care demand was introduced by Deb and Trivedi (1997).
The mixture approach has the intuitive appeal of allowing for subgroups of the population with different
health status. If individuals are classified as healthy or unhealthy then two subgroups are defined. A
finer classification scheme would lead to more subgroups. Many studies have incorporated objective
and/or subjective indicators of health status in an effort to capture this heterogeneity. The available
objective measures, such as limitations on activity, are not necessarily very informative about a person’s
overall health status. Subjective, self-reported measures may suffer from the same problem, and may
also not be exogenous

Finite mixture models are conceptually simple. The density is

fY (y, φ1, ..., φp, π1, ..., πp−1) =
p−1∑
i=1

πif
(i)
Y (y, φi) + πpf

p
Y (y, φp),

where πi > 0, i = 1, 2, ..., p, πp = 1 − ∑p−1
i=1 πi, and

∑p
i=1 πi = 1. Identification requires that the πi are

ordered in some way, for example, π1 ≥ π2 ≥ · · · ≥ πp and φi 6= φj, i 6= j. This is simple to accomplish
post-estimation by rearrangement and possible elimination of redundant component densities.

• The properties of the mixture density follow in a straightforward way from those of the com-
ponents. In particular, the moment generating function is the same mixture of the moment



generating functions of the component densities, so, for example, E(Y |x) = ∑p
i=1 πiµi(x), where

µi(x) is the mean of the ith component density.

• Mixture densities may suffer from overparameterization, since the total number of parameters
grows rapidly with the number of component densities. It is possible to constrained parameters
across the mixtures.

• Testing for the number of component densities is a tricky issue. For example, testing for p = 1
(a single component, which is to say, no mixture) versus p = 2 (a mixture of two components)
involves the restriction π1 = 1, which is on the boundary of the parameter space. Not that when
π1 = 1, the parameters of the second component can take on any value without affecting the
density. Usual methods such as the likelihood ratio test are not applicable when parameters are
on the boundary under the null hypothesis. Information criteria means of choosing the model
(see below) are valid.

The following results are for a mixture of 2 NB-II models, for the OBDV data, which you can replicate
using this program .

OBDV

******************************************************
Mixed Negative Binomial model, MEPS 1996 full data set

MLE Estimation Results
BFGS convergence: Normal convergence

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-II/EstimateNegBin.m


Average Log-L: -2.164783
Observations: 4564

estimate st. err t-stat p-value
constant 0.127 0.512 0.247 0.805
pub. ins. 0.861 0.174 4.962 0.000
priv. ins. 0.146 0.193 0.755 0.450
sex 0.346 0.115 3.017 0.003
age 0.024 0.004 6.117 0.000
edu 0.025 0.016 1.590 0.112
inc -0.000 0.000 -0.214 0.831
alpha 1.351 0.168 8.061 0.000
constant 0.525 0.196 2.678 0.007
pub. ins. 0.422 0.048 8.752 0.000
priv. ins. 0.377 0.087 4.349 0.000
sex 0.400 0.059 6.773 0.000
age 0.296 0.036 8.178 0.000
edu 0.111 0.042 2.634 0.008
inc 0.014 0.051 0.274 0.784
alpha 1.034 0.187 5.518 0.000
Mix 0.257 0.162 1.582 0.114

Information Criteria
CAIC : 19920.3807 Avg. CAIC: 4.3647
BIC : 19903.3807 Avg. BIC: 4.3610
AIC : 19794.1395 Avg. AIC: 4.3370

******************************************************



It is worth noting that the mixture parameter is not significantly different from zero, but also not
that the coefficients of public insurance and age, for example, differ quite a bit between the two latent
classes.

Information criteria

As seen above, a Poisson model can’t be tested (using standard methods) as a restriction of a negative
binomial model. But it seems, based upon the values of the likelihood functions and the fact that
the NB model fits the variance much better, that the NB model is more appropriate. How can we
determine which of a set of competing models is the best?

The information criteria approach is one possibility. Information criteria are functions of the log-
likelihood, with a penalty for the number of parameters used. Three popular information criteria are
the Akaike (AIC), Bayes (BIC) and consistent Akaike (CAIC). The formulae are

CAIC = −2 lnL(θ̂) + k(lnn+ 1)
BIC = −2 lnL(θ̂) + k lnn
AIC = −2 lnL(θ̂) + 2k

It can be shown that the CAIC and BIC will select the correctly specified model from a group of
models, asymptotically. This doesn’t mean, of course, that the correct model is necesarily in the
group. The AIC is not consistent, and will asymptotically favor an over-parameterized model over the
correctly specified model. Here are information criteria values for the models we’ve seen, for OBDV.
Pretty clearly, the NB models are better than the Poisson. The one additional parameter gives a very
significant improvement in the likelihood function value. Between the NB-I and NB-II models, the



Table 18.3: Information Criteria, OBDV

Model AIC BIC CAIC
Poisson 7.345 7.355 7.357
NB-I 4.375 4.386 4.388
NB-II 4.373 4.385 4.386
MNB-II 4.337 4.361 4.365

NB-II is slightly favored. But one should remember that information criteria values are statistics,
with variances. With another sample, it may well be that the NB-I model would be favored, since the
differences are so small. The MNB-II model is favored over the others, by all 3 information criteria.

Why is all of this in the chapter on QML? Let’s suppose that the correct model for OBDV is in fact
the NB-II model. It turns out in this case that the Poisson model will give consistent estimates of the
slope parameters (if a model is a member of the linear-exponential family and the conditional mean
is correctly specified, then the parameters of the conditional mean will be consistently estimated).
So the Poisson estimator would be a QML estimator that is consistent for some parameters of the
true model. The ordinary OPG or inverse Hessian ”ML” covariance estimators are however biased
and inconsistent, since the information matrix equality does not hold for QML estimators. But for
i.i.d. data (which is the case for the MEPS data) the QML asymptotic covariance can be consistently
estimated, as discussed above, using the sandwich form for the ML estimator. mle_results in fact
reports sandwich results, so the Poisson estimation results would be reliable for inference even if the
true model is the NB-I or NB-II. Not that they are in fact similar to the results for the NB models.

However, if we assume that the correct model is the MNB-II model, as is favored by the informa-
tion criteria, then both the Poisson and NB-x models will have misspecified mean functions, so the
parameters that influence the means would be estimated with bias and inconsistently.



18.3 Exercises

1. Considering the MEPS data (the description is in Section 11.4), for the OBDV (y) measure, let
η be a latent index of health status that has expectation equal to unity.1 We suspect that η and
PRIV may be correlated, but we assume that η is uncorrelated with the other regressors. We
assume that

E(y|PUB,PRIV,AGE,EDUC, INC, η)
= exp(β1 + β2PUB + β3PRIV + β4AGE + β5EDUC + β6INC)η.

We use the Poisson QML estimator of the model

y ∼ Poisson(λ)
λ = exp(β1 + β2PUB + β3PRIV + (18.2)

β4AGE + β5EDUC + β6INC).

Since much previous evidence indicates that health care services usage is overdispersed2, this is
almost certainly not an ML estimator, and thus is not efficient. However, when η and PRIV

are uncorrelated, this estimator is consistent for the βi parameters, since the conditional mean
is correctly specified in that case. When η and PRIV are correlated, Mullahy’s (1997) NLIV

1A restriction of this sort is necessary for identification.
2Overdispersion exists when the conditional variance is greater than the conditional mean. If this is the case, the Poisson specification is not

correct.



estimator that uses the residual function

ε = y

λ
− 1,

where λ is defined in equation 18.2, with appropriate instruments, is consistent. As instruments
we use all the exogenous regressors, as well as the cross products of PUB with the variables in
Z = {AGE,EDUC, INC}. That is, the full set of instruments is

W = {1 PUB Z PUB × Z }.

(a) Calculate the Poisson QML estimates.

(b) Calculate the generalized IV estimates (do it using a GMM formulation - see the portfolio
example for hints how to do this).

(c) Calculate the Hausman test statistic to test the exogeneity of PRIV.

(d) comment on the results



Chapter 19

Nonlinear least squares (NLS)

Readings: Davidson and MacKinnon, Ch. 2∗ and 5∗; Gallant, Ch. 1

19.1 Introduction and definition

Nonlinear least squares (NLS) is a means of estimating the parameter of the model

yt = f(xt, θ0) + εt.

• In general, εt will be heteroscedastic and autocorrelated, and possibly nonnormally distributed.
However, dealing with this is exactly as in the case of linear models, so we’ll just treat the iid
case here,

εt ∼ iid(0, σ2)
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If we stack the observations vertically, defining

y = (y1, y2, ..., yn)′

f = (f(x1, θ), f(x1, θ), ..., f(x1, θ))′

and
ε = (ε1, ε2, ..., εn)′

we can write the n observations as
y = f(θ) + ε

Using this notation, the NLS estimator can be defined as

θ̂ ≡ arg min
Θ
sn(θ) = 1

n
[y− f(θ)]′ [y− f(θ)] = 1

n
‖ y− f(θ) ‖2

• The estimator minimizes the weighted sum of squared errors, which is the same as minimizing
the Euclidean distance between y and f(θ).

The objective function can be written as

sn(θ) = 1
n

[y′y− 2y′f(θ) + f(θ)′f(θ)] ,

which gives the first order conditions

−
[
∂

∂θ
f(θ̂)′

]
y +

[
∂

∂θ
f(θ̂)′

]
f(θ̂) ≡ 0.



Define the n×K matrix
F(θ̂) ≡ Dθ′f(θ̂). (19.1)

In shorthand, use F̂ in place of F(θ̂). Using this, the first order conditions can be written as

−F̂′y + F̂′f(θ̂) ≡ 0,

or
F̂′
[
y− f(θ̂)

]
≡ 0. (19.2)

This bears a good deal of similarity to the f.o.c. for the linear model - the derivative of the prediction
is orthogonal to the prediction error. If f(θ) = Xθ, then F̂ is simply X, so the f.o.c. (with spherical
errors) simplify to

X′y−X′Xβ = 0,

the usual 0LS f.o.c.
We can interpret this geometrically: INSERT drawings of geometrical depiction of OLS and NLS

(see Davidson and MacKinnon, pgs. 8,13 and 46).

• Note that the nonlinearity of the manifold leads to potential multiple local maxima, minima and
saddlepoints: the objective function sn(θ) is not necessarily well-behaved and may be difficult to
minimize.



19.2 Identification

As before, identification can be considered conditional on the sample, and asymptotically. The
condition for asymptotic identification is that sn(θ) tend to a limiting function s∞(θ) such that
s∞(θ0) < s∞(θ), ∀θ 6= θ0. This will be the case if s∞(θ0) is strictly convex at θ0, which requires
that D2

θs∞(θ0) be positive definite. Consider the objective function:

sn(θ) = 1
n

n∑
t=1

[yt − f(xt, θ)]2

= 1
n

n∑
t=1

[
f(xt, θ0) + εt − ft(xt, θ)

]2
= 1

n

n∑
t=1

[
ft(θ0)− ft(θ)

]2 + 1
n

n∑
t=1

(εt)2

− 2
n

n∑
t=1

[
ft(θ0)− ft(θ)

]
εt

• As in example 12.4, which illustrated the consistency of extremum estimators using OLS, we
conclude that the second term will converge to a constant which does not depend upon θ.

• A LLN can be applied to the third term to conclude that it converges pointwise to 0, as long as
f(θ) and ε are uncorrelated.

• Next, pointwise convergence needs to be stregnthened to uniform almost sure convergence. There
are a number of possible assumptions one could use. Here, we’ll just assume it holds.



• Turning to the first term, we’ll assume a pointwise law of large numbers applies, so

1
n

n∑
t=1

[
ft(θ0)− ft(θ)

]2 a.s.→
∫ [
f(z, θ0)− f(z, θ)

]2
dµ(z), (19.3)

where µ(x) is the distribution function of x. In many cases, f(x, θ) will be bounded and con-
tinuous, for all θ ∈ Θ, so strengthening to uniform almost sure convergence is immediate. For
example if f(x, θ) = [1 + exp(−xθ)]−1 , f : <K → (0, 1) , a bounded range, and the function is
continuous in θ.

Given these results, it is clear that a minimizer is θ0. When considering identification (asymptotic),
the question is whether or not there may be some other minimizer. A local condition for identification
is that

∂2

∂θ∂θ′
s∞(θ) = ∂2

∂θ∂θ′

∫ [
f(x, θ0)− f(x, θ)

]2
dµ(x)

be positive definite at θ0. Evaluating this derivative, we obtain (after a little work)

∂2

∂θ∂θ′

∫ [
f(x, θ0)− f(x, θ)

]2
dµ(x)

∣∣∣∣∣∣
θ0

= 2
∫ [
Dθf(z, θ0)′

] [
Dθ′f(z, θ0)

]′
dµ(z)

the expectation of the outer product of the gradient of the regression function evaluated at θ0. (Note:
the uniform boundedness we have already assumed allows passing the derivative through the integral,
by the dominated convergence theorem.) This matrix will be positive definite (wp1) as long as the
gradient vector is of full rank (wp1). The tangent space to the regression manifold must span a K
-dimensional space if we are to consistently estimate a K -dimensional parameter vector. This is
analogous to the requirement that there be no perfect colinearity in a linear model. This is a necessary



condition for identification. Note that the LLN implies that the above expectation is equal to

J∞(θ0) = 2 lim EF′F
n

19.3 Consistency

We simply assume that the conditions of Theorem 29 hold, so the estimator is consistent. Given
that the strong stochastic equicontinuity conditions hold, as discussed above, and given the above
identification conditions an a compact estimation space (the closure of the parameter space Θ), the
consistency proof’s assumptions are satisfied.

19.4 Asymptotic normality

As in the case of GMM, we also simply assume that the conditions for asymptotic normality as in
Theorem 31 hold. The only remaining problem is to determine the form of the asymptotic variance-
covariance matrix. Recall that the result of the asymptotic normality theorem is

√
n
(
θ̂ − θ0

)
d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1] ,

where J∞(θ0) is the almost sure limit of ∂2

∂θ∂θ′sn(θ) evaluated at θ0, and

I∞(θ0) = lim V ar
√
nDθsn(θ0)



The objective function is
sn(θ) = 1

n

n∑
t=1

[yt − f(xt, θ)]2

So
Dθsn(θ) = −2

n

n∑
t=1

[yt − f(xt, θ)]Dθf(xt, θ).

Evaluating at θ0,

Dθsn(θ0) = −2
n

n∑
t=1

εtDθf(xt, θ0).

Note that the expectation of this is zero, since εt and xt are assumed to be uncorrelated. So to calculate
the variance, we can simply calculate the second moment about zero. Also note that

n∑
t=1

εtDθf(xt, θ0) = ∂

∂θ

[
f(θ0)

]′
ε

= F′ε

With this we obtain

I∞(θ0) = lim V ar
√
nDθsn(θ0)

= limnE 4
n2F′εε’F

= 4σ2 lim EF′F
n

We’ve already seen that
J∞(θ0) = 2 lim EF′F

n
,



where the expectation is with respect to the joint density of x and ε. Combining these expressions for
J∞(θ0) and I∞(θ0), and the result of the asymptotic normality theorem, we get

√
n
(
θ̂ − θ0

)
d→ N

0,
lim EF′F

n

−1

σ2

 .
We can consistently estimate the variance covariance matrix using

F̂′F̂
n

−1

σ̂2, (19.4)

where F̂ is defined as in equation 19.1 and

σ̂2 =

[
y− f(θ̂)

]′ [
y− f(θ̂)

]
n

,

the obvious estimator. Note the close correspondence to the results for the linear model.

19.5 Example: The Poisson model for count data

Suppose that yt conditional on xt is independently distributed Poisson. A Poisson random variable is
a count data variable, which means it can take the values {0,1,2,...}. This sort of model has been used
to study visits to doctors per year, number of patents registered by businesses per year, etc.

The Poisson density is
f(yt) = exp(−λt)λytt

yt!
, yt ∈ {0, 1, 2, ...}.



The mean of yt is λt, as is the variance. Note that λt must be positive. Suppose that the true mean is

λ0
t = exp(x′tβ0),

which enforces the positivity of λt. Suppose we estimate β0 by nonlinear least squares:

β̂ = arg min sn(β) = 1
T

n∑
t=1

(yt − exp(x′tβ))2

We can write

sn(β) = 1
T

n∑
t=1

(
exp(x′tβ0 + εt − exp(x′tβ)

)2

= 1
T

n∑
t=1

(
exp(x′tβ0 − exp(x′tβ)

)2 + 1
T

n∑
t=1

ε2
t + 2 1

T

n∑
t=1

εt
(
exp(x′tβ0 − exp(x′tβ)

)

The last term has expectation zero since the assumption that E(yt|xt) = exp(x′tβ0) implies that
E (εt|xt) = 0, which in turn implies that functions of xt are uncorrelated with εt. Applying a strong
LLN, and noting that the objective function is continuous on a compact parameter space, we get

s∞(β) = Ex
(
exp(x′β0 − exp(x′β)

)2 + Ex exp(x′β0)

where the last term comes from the fact that the conditional variance of ε is the same as the variance
of y. This function is clearly minimized at β = β0, so the NLS estimator is consistent as long as
identification holds.

Exercise 64. Determine the limiting distribution of
√
n
(
β̂ − β0

)
. This means finding the the specific



forms of ∂2

∂β∂β′sn(β), J (β0), ∂sn(β)
∂β

∣∣∣∣ , and I(β0). Again, use a CLT as needed, no need to verify that it
can be applied.

19.6 The Gauss-Newton algorithm

Readings: Davidson and MacKinnon, Chapter 6, pgs. 201-207∗.
The Gauss-Newton optimization technique is specifically designed for nonlinear least squares. The

idea is to linearize the nonlinear model, rather than the objective function. The model is

y = f(θ0) + ε.

At some θ in the parameter space, not equal to θ0, we have

y = f(θ) + ν

where ν is a combination of the fundamental error term ε and the error due to evaluating the regression
function at θ rather than the true value θ0. Take a first order Taylor’s series approximation around a
point θ1 :

y = f(θ1) +
[
Dθ′f

(
θ1)] (θ − θ1) + ν + approximation error.

Define z ≡ y− f(θ1) and b ≡ (θ − θ1). Then the last equation can be written as

z = F(θ1)b+ ω,

where, as above, F(θ1) ≡ Dθ′f(θ1) is the n × K matrix of derivatives of the regression function,



evaluated at θ1, and ω is ν plus approximation error from the truncated Taylor’s series.

• Note that F is known, given θ1.

• Note that one could estimate b simply by performing OLS on the above equation.

• Given b̂, we calculate a new round estimate of θ0 as θ2 = b̂+ θ1. With this, take a new Taylor’s
series expansion around θ2 and repeat the process. Stop when b̂ = 0 (to within a specified
tolerance).

To see why this might work, consider the above approximation, but evaluated at the NLS estimator:

y = f(θ̂) + F(θ̂)
(
θ − θ̂

)
+ ω

The OLS estimate of b ≡ θ − θ̂ is

b̂ =
(
F̂′F̂

)−1 F̂′
[
y− f(θ̂)

]
.

This must be zero, since
F̂′
(
θ̂
) [

y− f(θ̂)
]
≡ 0

by definition of the NLS estimator (these are the normal equations as in equation 19.2, Since b̂ ≡ 0
when we evaluate at θ̂, updating would stop.

• The Gauss-Newton method doesn’t require second derivatives, as does the Newton-Raphson
method, so it’s faster.



• The varcov estimator, as in equation 19.4 is simple to calculate, since we have F̂ as a by-product
of the estimation process (i.e., it’s just the last round “regressor matrix”). In fact, a normal OLS
program will give the NLS varcov estimator directly, since it’s just the OLS varcov estimator
from the last iteration.

• The method can suffer from convergence problems since F(θ)′F(θ), may be very nearly singular,
even with an asymptotically identified model, especially if θ is very far from θ̂. Consider the
example

y = β1 + β2xtβ
3 + εt

When evaluated at β2 ≈ 0, β3 has virtually no effect on the NLS objective function, so F will
have rank that is “essentially” 2, rather than 3. In this case, F′F will be nearly singular, so
(F′F)−1 will be subject to large roundoff errors.

19.7 Application: Limited dependent variables and sample
selection

Readings: Davidson and MacKinnon, Ch. 15∗ (a quick reading is sufficient), J. Heckman, “Sample
Selection Bias as a Specification Error”, Econometrica, 1979 (This is a classic article, not required for
reading, and which is a bit out-dated. Nevertheless it’s a good place to start if you encounter sample
selection problems in your research).

Sample selection is a common problem in applied research. The problem occurs when observations
used in estimation are sampled non-randomly, according to some selection scheme.



Example: Labor Supply

Labor supply of a person is a positive number of hours per unit time supposing the offer wage is higher
than the reservation wage, which is the wage at which the person prefers not to work. The model
(very simple, with t subscripts suppressed):

• Characteristics of individual: x

• Latent labor supply: s∗ = x′β + ω

• Offer wage: wo = z′γ + ν

• Reservation wage: wr = q′δ + η

Write the wage differential as

w∗ = (z′γ + ν)− (q′δ + η)
≡ r′θ + ε

We have the set of equations

s∗ = x′β + ω

w∗ = r′θ + ε.

Assume that  ω
ε

 ∼ N


 0

0

 ,
 σ2 ρσ

ρσ 1


 .



We assume that the offer wage and the reservation wage, as well as the latent variable s∗ are unob-
servable. What is observed is

w = 1 [w∗ > 0]
s = ws∗.

In other words, we observe whether or not a person is working. If the person is working, we observe
labor supply, which is equal to latent labor supply, s∗. Otherwise, s = 0 6= s∗. Note that we are using
a simplifying assumption that individuals can freely choose their weekly hours of work.

Suppose we estimated the model
s∗ = x′β + residual

using only observations for which s > 0. The problem is that these observations are those for which
w∗ > 0, or equivalently, −ε < r′θ and

E [ω| − ε < r′θ] 6= 0,

since ε and ω are dependent. Furthermore, this expectation will in general depend on x since elements
of x can enter in r. Because of these two facts, least squares estimation is biased and inconsistent.

Consider more carefully E [ω| − ε < r′θ] . Given the joint normality of ω and ε, we can write (see
for example Spanos Statistical Foundations of Econometric Modelling, pg. 122)

ω = ρσε+ η,



where η has mean zero and is independent of ε. With this we can write

s∗ = x′β + ρσε+ η.

If we condition this equation on −ε < r′θ we get

s = x′β + ρσE(ε| − ε < r′θ) + η

which may be written as
s = x′β + ρσE(ε|ε > −r′θ) + η

• A useful result is that for
z ∼ N(0, 1)

E(z|z > z∗) = φ(z∗)
Φ(−z∗) ,

where φ (·) and Φ (·) are the standard normal density and distribution function, respectively.
The quantity on the RHS above is known as the inverse Mill’s ratio:

IMR(z∗) = φ(z∗)
Φ(−z∗)

With this we can write (making use of the fact that the standard normal density is symmetric
about zero, so that φ(−a) = φ(a)):



s = x′β + ρσ
φ (r′θ)
Φ (r′θ) + η (19.5)

≡
[

x′ φ(r′θ)
Φ(r′θ)

]  β
ζ

 + η. (19.6)

where ζ = ρσ. The error term η has conditional mean zero, and is uncorrelated with the regressors
x′ φ(r′θ)

Φ(r′θ) . At this point, we can estimate the equation by NLS.

• Heckman showed how one can estimate this in a two step procedure where first θ is estimated,
then equation 19.6 is estimated by least squares using the estimated value of θ to form the
regressors. This is inefficient and estimation of the covariance is a tricky issue. It is probably
easier (and more efficient) just to do MLE.

• The model presented above depends strongly on joint normality. There exist many alternative
models which weaken the maintained assumptions. It is possible to estimate consistently without
distributional assumptions. See Ahn and Powell, Journal of Econometrics, 1994.



Chapter 20

Nonparametric inference

A good reference is Li and Racine (2007) Nonparametric Econometrics: Theory and Practice.

20.1 Possible pitfalls of parametric inference: estimation

Readings: H. White (1980) “Using Least Squares to Approximate Unknown Regression Functions,”
International Economic Review, pp. 149-70.

In this section we consider a simple example, which illustrates both why nonparametric methods
may in some cases be preferred to parametric methods.

We suppose that data is generated by random sampling of (y, x), where y = f(x) +ε, x is uniformly
distributed on (0, 2π), and ε is a classical error with variance equal to 1. Suppose that

f(x) = 1 + 3x
2π −

(
x

2π

)2

547



The problem of interest is to estimate the elasticity of f(x) with respect to x, throughout the range
of x.

In general, the functional form of f(x) is unknown. One idea is to take a Taylor’s series approxi-
mation to f(x) about some point x0. Flexible functional forms such as the transcendental logarithmic
(usually known as the translog) can be interpreted as second order Taylor’s series approximations.
We’ll work with a first order approximation, for simplicity. Approximating about x0:

h(x) = f(x0) +Dxf(x0) (x− x0)

If the approximation point is x0 = 0, we can write

h(x) = a+ bx

The coefficient a is the value of the function at x = 0, and the slope is the value of the derivative
at x = 0. These are of course not known. One might try estimation by ordinary least squares. The
objective function is

s(a, b) = 1/n
n∑
t=1

(yt − h(xt))2 .

The limiting objective function, following the argument we used to get equations 12.1 and 19.3 is

s∞(a, b) =
∫ 2π

0
(f(x)− h(x))2 dx.

The theorem regarding the consistency of extremum estimators (Theorem 29) tells us that â and b̂

will converge almost surely to the values that minimize the limiting objective function. Solving the



Figure 20.1: True and simple approximating functions
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first order conditions1 reveals that s∞(a, b) obtains its minimum at
{
a0 = 7

6 , b
0 = 1

π

}
. The estimated

approximating function ĥ(x) therefore tends almost surely to

h∞(x) = 7/6 + x/π

In Figure 20.1 we see the true function and the limit of the approximation to see the asymptotic bias
as a function of x.

(The approximating model is the straight line, the true model has curvature.) Note that the
approximating model is in general inconsistent, even at the approximation point. This shows that
“flexible functional forms” based upon Taylor’s series approximations do not in general lead to consis-

1The following results were obtained using the free computer algebra system (CAS) Maxima. Unfortunately, I have lost the source code to
get the results. It’s not hard to do, though.

http://maxima.sourceforge.net/


tent estimation of functions.
The approximating model seems to fit the true model fairly well, asymptotically. However, we are

interested in the elasticity of the function. Recall that an elasticity is the marginal function divided
by the average function:

ε(x) = φ′(x)
φ(x)/x

Good approximation of the elasticity over the range of x will require a good approximation of both
f(x) and f ′(x) over the range of x. The approximating elasticity is

η(x) = h′(x)
h(x)/x

In Figure 20.2 we see the true elasticity and the elasticity obtained from the limiting approximating
model.

The true elasticity is the line that has negative slope for large x. Visually we see that the elasticity
is not approximated so well. Root mean squared error in the approximation of the elasticity is

(∫ 2π

0
(ε(x)− η(x))2 dx

)1/2
= . 31546

Now suppose we use the leading terms of a trigonometric series as the approximating model. The
reason for using a trigonometric series as an approximating model is motivated by the asymptotic
properties of the Fourier flexible functional form (Gallant, 1981, 1982), which we will study in more
detail below. Normally with this type of model the number of basis functions is an increasing function
of the sample size. Here we hold the set of basis function fixed. We will consider the asymptotic
behavior of a fixed model, which we interpret as an approximation to the estimator’s behavior in finite



Figure 20.2: True and approximating elasticities
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samples. Consider the set of basis functions:

Z(x) =
[

1 x cos(x) sin(x) cos(2x) sin(2x)
]
.

The approximating model is
gK(x) = Z(x)α.

Maintaining these basis functions as the sample size increases, we find that the limiting objective
function is minimized at

{
a1 = 7

6 , a2 = 1
π
, a3 = − 1

π2 , a4 = 0, a5 = − 1
4π2 , a6 = 0

}
.



Figure 20.3: True function and more flexible approximation
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Substituting these values into gK(x) we obtain the almost sure limit of the approximation

g∞(x) = 7/6 + x/π + (cosx)
(
− 1
π2

)
+ (sin x) 0 + (cos 2x)

(
− 1

4π2

)
+ (sin 2x) 0 (20.1)

In Figure 20.3 we have the approximation and the true function: Clearly the truncated trigonometric
series model offers a better approximation, asymptotically, than does the linear model. In Figure 20.4
we have the more flexible approximation’s elasticity and that of the true function: On average, the fit
is better, though there is some implausible wavyness in the estimate. Root mean squared error in the



Figure 20.4: True elasticity and more flexible approximation

0 1 2 3 4 5 6 7
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
approx

true

approximation of the elasticity is

∫ 2π

0

ε(x)− g′∞(x)x
g∞(x)

2

dx


1/2

= . 16213,

about half that of the RMSE when the first order approximation is used. If the trigonometric series
contained infinite terms, this error measure would be driven to zero, as we shall see.



20.2 Possible pitfalls of parametric inference: hypothesis test-
ing

What do we mean by the term “nonparametric inference”? Simply, this means inferences that are
possible without restricting the functions of interest to belong to a parametric family.

• Consider means of testing for the hypothesis that consumers maximize utility. A consequence
of utility maximization is that the Slutsky matrix D2

ph(p, U), where h(p, U) are the a set of
compensated demand functions, must be negative semi-definite. One approach to testing for
utility maximization would estimate a set of normal demand functions x(p,m).

• Estimation of these functions by normal parametric methods requires specification of the func-
tional form of demand, for example

x(p,m) = x(p,m, θ0) + ε, θ0 ∈ Θ,

where x(p,m, θ0) is a function of known form and θ0 is a finite dimensional parameter.

• After estimation, we could use x̂ = x(p,m, θ̂) to calculate (by solving the integrability problem,
which is non-trivial) D̂2

ph(p, U). If we can statistically reject that the matrix is negative semi-
definite, we might conclude that consumers don’t maximize utility.

• The problem with this is that the reason for rejection of the theoretical proposition may be that
our choice of functional form is incorrect. In the introductory section we saw that functional
form misspecification leads to inconsistent estimation of the function and its derivatives.



• Testing using parametric models always means we are testing a compound hypothesis. The
hypothesis that is tested is 1) the economic proposition we wish to test, and 2) the model is
correctly specified. Failure of either 1) or 2) can lead to rejection (as can a Type-I error, even
when 2) holds). This is known as the “model-induced augmenting hypothesis.”

• Varian’s WARP allows one to test for utility maximization without specifying the form of the
demand functions. The only assumptions used in the test are those directly implied by theory
(well, maybe that’s too strong: we also assume that the data are observed without measurement
error), so rejection of the hypothesis calls into question the theory (unless there’s measurement
error in the data).

• Nonparametric inference also allows direct testing of economic propositions, avoiding the “model-
induced augmenting hypothesis”. The cost of nonparametric methods is usually an increase in
complexity, and a loss of power, compared to what one would get using a well-specified parametric
model. The benefit is robustness against possible misspecification.

20.3 Estimation of regression functions

The Fourier functional form

Readings: Gallant, 1987, “Identification and consistency in semi-nonparametric regression,” in Ad-
vances in Econometrics, Fifth World Congress, V. 1, Truman Bewley, ed., Cambridge.

Suppose we have a multivariate model

y = f(x) + ε,



where f(x) is of unknown form and x is a P−dimensional vector. For simplicity, assume that ε is a
classical error. Let us take the estimation of the vector of elasticities with typical element

ξxi = xi
f(x)

∂f(x)
∂xif(x) ,

at an arbitrary point xi.
The Fourier form, following Gallant (1982), but with a somewhat different parameterization, may

be written as

gK(x | θK) = α + x′β + 1/2x′Cx +
A∑
α=1

J∑
j=1

(ujα cos(jk′αx)− vjα sin(jk′αx)) . (20.2)

where the K-dimensional parameter vector

θK = {α, β′, vec∗(C)′, u11, v11, . . . , uJA, vJA}′. (20.3)

• We assume that the conditioning variables x have each been transformed to lie in an interval that
is shorter than 2π. This is required to avoid periodic behavior of the approximation, which is
desirable since economic functions aren’t periodic. For example, subtract sample means, divide
by the maxima of the conditioning variables, and multiply by 2π−eps, where eps is some positive
number less than 2π in value.

• The kα are ”elementary multi-indices” which are simply P− vectors formed of integers (negative,
positive and zero). The kα, α = 1, 2, ..., A are required to be linearly independent, and we follow



the convention that the first non-zero element be positive. For example
[

0 1 −1 0 1
]′

is a potential multi-index to be used, but
[

0 −1 −1 0 1
]′

is not since its first nonzero element is negative. Nor is
[

0 2 −2 0 2
]′

a multi-index we would use, since it is a scalar multiple of the original multi-index.

• We parameterize the matrix C differently than does Gallant because it simplifies things in prac-
tice. The cost of this is that we are no longer able to test a quadratic specification using nested
testing.

The vector of first partial derivatives is

DxgK(x | θK) = β + Cx +
A∑
α=1

J∑
j=1

[(−ujα sin(jk′αx)− vjα cos(jk′αx)) jkα] (20.4)

and the matrix of second partial derivatives is

D2
xgK(x|θK) = C +

A∑
α=1

J∑
j=1

[
(−ujα cos(jk′αx) + vjα sin(jk′αx)) j2kαk′α

]
(20.5)



To define a compact notation for partial derivatives, let λ be an N -dimensional multi-index with
no negative elements. Define | λ |∗ as the sum of the elements of λ. If we have N arguments x of the
(arbitrary) function h(x), use Dλh(x) to indicate a certain partial derivative:

Dλh(x) ≡ ∂|λ|
∗

∂xλ1
1 ∂x

λ2
2 · · · ∂xλNN

h(x)

When λ is the zero vector, Dλh(x) ≡ h(x). Taking this definition and the last few equations into
account, we see that it is possible to define (1×K) vector Zλ(x) so that

DλgK(x|θK) = zλ(x)′θK . (20.6)

• Both the approximating model and the derivatives of the approximating model are linear in the
parameters.

• For the approximating model to the function (not derivatives), write gK(x|θK) = z′θK for sim-
plicity.

The following theorem can be used to prove the consistency of the Fourier form.

Theorem 65. [Gallant and Nychka, 1987] Suppose that ĥn is obtained by maximizing a sample ob-
jective function sn(h) over HKn

where HK is a subset of some function space H on which is defined a
norm ‖ h ‖. Consider the following conditions:

(a) Compactness: The closure of H with respect to ‖ h ‖ is compact in the relative topology defined
by ‖ h ‖.



(b) Denseness: ∪KHK, K = 1, 2, 3, ... is a dense subset of the closure of H with respect to ‖ h ‖
and HK ⊂ HK+1.

(c) Uniform convergence: There is a point h∗ in H and there is a function s∞(h, h∗) that is
continuous in h with respect to ‖ h ‖ such that

lim
n→∞ sup

H
| sn(h)− s∞(h, h∗) |= 0

almost surely.
(d) Identification: Any point h in the closure ofH with s∞(h, h∗) ≥ s∞(h∗, h∗) must have ‖ h−h∗ ‖=

0.
Under these conditions limn→∞ ‖ h∗− ĥn ‖= 0 almost surely, provided that limn→∞Kn =∞ almost

surely.

The modification of the original statement of the theorem that has been made is to set the parameter
space Θ in Gallant and Nychka’s (1987) Theorem 0 to a single point and to state the theorem in terms
of maximization rather than minimization.

This theorem is very similar in form to Theorem 29. The main differences are:

1. A generic norm ‖ h ‖ is used in place of the Euclidean norm. This norm may be stronger than
the Euclidean norm, so that convergence with respect to ‖ h ‖ implies convergence w.r.t the
Euclidean norm. Typically we will want to make sure that the norm is strong enough to imply
convergence of all functions of interest.

2. The “estimation space” H is a function space. It plays the role of the parameter space Θ in
our discussion of parametric estimators. There is no restriction to a parametric family, only a



restriction to a space of functions that satisfy certain conditions. This formulation is much less
restrictive than the restriction to a parametric family.

3. There is a denseness assumption that was not present in the other theorem.

We will not prove this theorem (the proof is quite similar to the proof of theorem [29], see Gallant,
1987) but we will discuss its assumptions, in relation to the Fourier form as the approximating model.

Sobolev norm Since all of the assumptions involve the norm ‖ h ‖ , we need to make explicit
what norm we wish to use. We need a norm that guarantees that the errors in approximation of the
functions we are interested in are accounted for. Since we are interested in first-order elasticities in
the present case, we need close approximation of both the function f(x) and its first derivative f ′(x),
throughout the range of x. Let X be an open set that contains all values of x that we’re interested
in. The Sobolev norm is appropriate in this case. It is defined, making use of our notation for partial
derivatives, as:

‖ h ‖m,X= max
|λ∗|≤m

sup
X

∣∣∣Dλh(x)
∣∣∣

To see whether or not the function f(x) is well approximated by an approximating model gK(x | θK),
we would evaluate

‖ f(x)− gK(x | θK) ‖m,X .

We see that this norm takes into account errors in approximating the function and partial derivatives
up to order m. If we want to estimate first order elasticities, as is the case in this example, the relevant
m would be m = 1. Furthermore, since we examine the sup over X , convergence w.r.t. the Sobolev
means uniform convergence, so that we obtain consistent estimates for all values of x.



Compactness Verifying compactness with respect to this norm is quite technical and unenlighten-
ing. It is proven by Elbadawi, Gallant and Souza, Econometrica, 1983. The basic requirement is that
if we need consistency w.r.t. ‖ h ‖m,X , then the functions of interest must belong to a Sobolev space
which takes into account derivatives of order m+ 1. A Sobolev space is the set of functions

Wm,X (D) = {h(x) :‖ h(x) ‖m,X< D},

where D is a finite constant. In plain words, the functions must have bounded partial derivatives of
one order higher than the derivatives we seek to estimate.

The estimation space and the estimation subspace Since in our case we’re interested in con-
sistent estimation of first-order elasticities, we’ll define the estimation space as follows:

Definition 66. [Estimation space] The estimation space H = W2,X (D). The estimation space is an
open set, and we presume that h∗ ∈ H.

So we are assuming that the function to be estimated has bounded second derivatives throughout
X .

With seminonparametric estimators, we don’t actually optimize over the estimation space. Rather,
we optimize over a subspace, HKn

, defined as:

Definition 67. [Estimation subspace] The estimation subspace HK is defined as

HK = {gK(x|θK) : gK(x|θK) ∈ W2,Z(D), θK ∈ <K},

where gK(x, θK) is the Fourier form approximation as defined in Equation 20.2.



Denseness The important point here is that HK is a space of functions that is indexed by a finite
dimensional parameter (θK has K elements, as in equation 20.3). With n observations, n > K,

this parameter is estimable. Note that the true function h∗ is not necessarily an element of HK , so
optimization over HK may not lead to a consistent estimator. In order for optimization over HK to
be equivalent to optimization over H, at least asymptotically, we need that:

1. The dimension of the parameter vector, dim θKn
→∞ as n→∞. This is achieved by making A

and J in equation 20.2 increasing functions of n, the sample size. It is clear that K will have to
grow more slowly than n. The second requirement is:

2. We need that the HK be dense subsets of H.

The estimation subspace HK , defined above, is a subset of the closure of the estimation space, H . A
set of subsets Aa of a set A is “dense” if the closure of the countable union of the subsets is equal to
the closure of A:

∪∞a=1Aa = A

Use a picture here. The rest of the discussion of denseness is provided just for completeness: there’s
no need to study it in detail. To show that HK is a dense subset of H with respect to ‖ h ‖1,X , it
is useful to apply Theorem 1 of Gallant (1982), who in turn cites Edmunds and Moscatelli (1977).
We reproduce the theorem as presented by Gallant, with minor notational changes, for convenience of
reference:

Theorem 68. [Edmunds and Moscatelli, 1977] Let the real-valued function h∗(x) be continuously
differentiable up to order m on an open set containing the closure of X . Then it is possible to choose
a triangular array of coefficients θ1, θ2, . . . θK , . . . , such that for every q with 0 ≤ q < m, and every
ε > 0, ‖ h∗(x)− hK(x|θK) ‖q,X= o(K−m+q+ε) as K →∞.



In the present application, q = 1, and m = 2. By definition of the estimation space, the elements
of H are once continuously differentiable on X , which is open and contains the closure of X , so the
theorem is applicable. Closely following Gallant and Nychka (1987), ∪∞HK is the countable union of
the HK . The implication of Theorem 68 is that there is a sequence of {hK} from ∪∞HK such that

lim
K→∞

‖ h∗ − hK ‖1,X= 0,

for all h∗ ∈ H. Therefore,
H ⊂ ∪∞HK .

However,
∪∞HK ⊂ H,

so
∪∞HK ⊂ H.

Therefore
H = ∪∞HK ,

so ∪∞HK is a dense subset of H, with respect to the norm ‖ h ‖1,X .

Uniform convergence We now turn to the limiting objective function. We estimate by OLS. The
sample objective function stated in terms of maximization is

sn(θK) = −1
n

n∑
t=1

(yt − gK(xt | θK))2



With random sampling, as in the case of Equations 12.1 and 19.3, the limiting objective function is

s∞ (g, f) = −
∫
X

(f(x)− g(x))2 dµx− σ2
ε . (20.7)

where the true function f(x) takes the place of the generic function h∗ in the presentation of the
theorem. Both g(x) and f(x) are elements of ∪∞HK .

The pointwise convergence of the objective function needs to be strengthened to uniform conver-
gence. We will simply assume that this holds, since the way to verify this depends upon the specific
application. We also have continuity of the objective function in g, with respect to the norm ‖ h ‖1,X

since

lim
‖g1−g0‖1,X→0

{
s∞

(
g1, f)

)
− s∞

(
g0, f)

)}
= lim

‖g1−g0‖1,X→0

∫
X

[(
g1(x)− f(x)

)2 −
(
g0(x)− f(x)

)2]
dµx.

By the dominated convergence theorem (which applies since the finite bound D used to defineW2,Z(D)
is dominated by an integrable function), the limit and the integral can be interchanged, so by inspec-
tion, the limit is zero.

Identification The identification condition requires that for any point (g, f) in H×H, s∞(g, f) ≥
s∞(f, f)⇒ ‖ g−f ‖1,X= 0. This condition is clearly satisfied given that g and f are once continuously
differentiable (by the assumption that defines the estimation space).

Review of concepts For the example of estimation of first-order elasticities, the relevant concepts
are:



• Estimation space H = W2,X (D): the function space in the closure of which the true function
must lie.

• Consistency norm ‖ h ‖1,X . The closure of H is compact with respect to this norm.

• Estimation subspace HK . The estimation subspace is the subset of H that is representable by a
Fourier form with parameter θK . These are dense subsets of H.

• Sample objective function sn(θK), the negative of the sum of squares. By standard arguments
this converges uniformly to the

• Limiting objective function s∞( g, f), which is continuous in g and has a global maximum in its
first argument, over the closure of the infinite union of the estimation subpaces, at g = f.

• As a result of this, first order elasticities

xi
f(x)

∂f(x)
∂xif(x)

are consistently estimated for all x ∈ X .

Discussion Consistency requires that the number of parameters used in the expansion increase with
the sample size, tending to infinity. If parameters are added at a high rate, the bias tends relatively
rapidly to zero. A basic problem is that a high rate of inclusion of additional parameters causes the
variance to tend more slowly to zero. The issue of how to chose the rate at which parameters are
added and which to add first is fairly complex. A problem is that the allowable rates for asymptotic



normality to obtain (Andrews 1991; Gallant and Souza, 1991) are very strict. Supposing we stick to
these rates, our approximating model is:

gK(x|θK) = z′θK .

• Define ZK as the n×K matrix of regressors obtained by stacking observations. The LS estimator
is

θ̂K = (Z′KZK)+ Z′Ky,

where (·)+ is the Moore-Penrose generalized inverse.

– This is used since Z′KZK may be singular, as would be the case for K(n) large enough when
some dummy variables are included.

• . The prediction, z′θ̂K , of the unknown function f(x) is asymptotically normally distributed:

√
n
(
z′θ̂K − f(x)

)
d→ N(0, AV ),

where
AV = lim

n→∞E

z′
Z′KZK

n

+

zσ̂2
 .

Formally, this is exactly the same as if we were dealing with a parametric linear model. I
emphasize, though, that this is only valid if K grows very slowly as n grows. If we can’t stick to
acceptable rates, we should probably use some other method of approximating the small sample
distribution. Bootstrapping is a possibility. We’ll discuss this in the section on simulation.



Kernel regression estimators

Readings: Bierens, 1987, “Kernel estimators of regression functions,” in Advances in Econometrics,
Fifth World Congress, V. 1, Truman Bewley, ed., Cambridge.

An alternative method to the semi-nonparametric method is a fully nonparametric method of
estimation. Kernel regression estimation is an example (others are splines, nearest neighbor, etc.).
We’ll consider the Nadaraya-Watson kernel regression estimator in a simple case.

• Suppose we have an iid sample from the joint density f(x, y), where x is k -dimensional. The
model is

yt = g(xt) + εt,

where
E(εt|xt) = 0.

• The conditional expectation of y given x is g(x). By definition of the conditional expectation,
we have

g(x) =
∫
y
f(x, y)
h(x) dy

= 1
h(x)

∫
yf(x, y)dy,

where h(x) is the marginal density of x :

h(x) =
∫
f(x, y)dy.



• This suggests that we could estimate g(x) by estimating h(x) and ∫
yf(x, y)dy.

Estimation of the denominator

A kernel estimator for h(x) has the form

ĥ(x) = 1
n

n∑
t=1

K [(x− xt) /γn]
γkn

,

where n is the sample size and k is the dimension of x.

• The function K(·) (the kernel) is absolutely integrable:
∫
|K(x)|dx <∞,

and K(·) integrates to 1 : ∫
K(x)dx = 1.

In this respect, K(·) is like a density function, but we do not necessarily restrict K(·) to be
nonnegative.

• The window width parameter, γn is a sequence of positive numbers that satisfies

lim
n→∞ γn = 0

lim
n→∞nγ

k
n = ∞

So, the window width must tend to zero, but not too quickly.



• To show pointwise consistency of ĥ(x) for h(x), first consider the expectation of the estimator
(because the estimator is an average of iid terms, we only need to consider the expectation of a
representative term):

E
[
ĥ(x)

]
=
∫
γ−kn K [(x− z) /γn]h(z)dz.

Change variables as z∗ = (x− z)/γn, so z = x− γnz∗ and | dzdz∗′ | = γkn, we obtain

E
[
ĥ(x)

]
=

∫
γ−kn K (z∗)h(x− γnz∗)γkndz∗

=
∫
K (z∗)h(x− γnz∗)dz∗.

Now, asymptotically,

lim
n→∞E

[
ĥ(x)

]
= lim

n→∞

∫
K (z∗)h(x− γnz∗)dz∗

=
∫

lim
n→∞K (z∗)h(x− γnz∗)dz∗

=
∫
K (z∗)h(x)dz∗

= h(x)
∫
K (z∗) dz∗

= h(x),

since γn → 0 and ∫
K (z∗) dz∗ = 1 by assumption. (Note: that we can pass the limit through the

integral is a result of the dominated convergence theorem. For this to hold we need that h(·) be
dominated by an absolutely integrable function.)



• Next, considering the variance of ĥ(x), we have, due to the iid assumption

nγknV
[
ĥ(x)

]
= nγkn

1
n2

n∑
t=1

V

K [(x− xt) /γn]
γkn


= γ−kn

1
n

n∑
t=1

V {K [(x− xt) /γn]}

• By the representative term argument, this is

nγknV
[
ĥ(x)

]
= γ−kn V {K [(x− z) /γn]}

• Also, since V (x) = E(x2)− E(x)2 we have

nγknV
[
ĥ(x)

]
= γ−kn E

{
(K [(x− z) /γn])2}− γ−kn {E (K [(x− z) /γn])}2

=
∫
γ−kn K [(x− z) /γn]2 h(z)dz − γkn

{∫
γ−kn K [(x− z) /γn]h(z)dz

}2

=
∫
γ−kn K [(x− z) /γn]2 h(z)dz − γknE

[
ĥ(x)

]2

The second term converges to zero:

γknE
[
ĥ(x)

]2 → 0,

by the previous result regarding the expectation and the fact that γn → 0. Therefore,

lim
n→∞nγ

k
nV

[
ĥ(x)

]
= lim

n→∞

∫
γ−kn K [(x− z) /γn]2 h(z)dz.



Using exactly the same change of variables as before, this can be shown to be

lim
n→∞nγ

k
nV

[
ĥ(x)

]
= h(x)

∫
[K(z∗)]2 dz∗.

Since both ∫ [K(z∗)]2 dz∗ and h(x) are bounded, this is bounded, and since nγkn →∞ by assump-
tion, we have that

V
[
ĥ(x)

]
→ 0.

• Since the bias and the variance both go to zero, we have pointwise consistency (convergence in
quadratic mean implies convergence in probability).

Estimation of the numerator

To estimate ∫
yf(x, y)dy, we need an estimator of f(x, y). The estimator has the same form as the

estimator for h(x), only with one dimension more:

f̂(x, y) = 1
n

n∑
t=1

K∗ [(y − yt) /γn, (x− xt) /γn]
γk+1
n

The kernel K∗ (·) is required to have mean zero:
∫
yK∗ (y, x) dy = 0

and to marginalize to the previous kernel for h(x) :
∫
K∗ (y, x) dy = K(x).



With this kernel, we have ∫
yf̂(y, x)dy = 1

n

n∑
t=1

yt
K [(x− xt) /γn]

γkn

by marginalization of the kernel, so we obtain

ĝ(x) = 1
ĥ(x)

∫
yf̂(y, x)dy

=
1
n

∑n
t=1 yt

K[(x−xt)/γn]
γkn

1
n

∑n
t=1

K[(x−xt)/γn]
γkn

=
∑n
t=1 ytK [(x− xt) /γn]∑n
t=1K [(x− xt) /γn]

.

This is the Nadaraya-Watson kernel regression estimator.

Discussion

• The kernel regression estimator for g(xt) is a weighted average of the yj, j = 1, 2, ..., n, where
higher weights are associated with points that are closer to xt. The weights sum to 1. See this
link for a graphic interpretation.

• The window width parameter γn imposes smoothness. The estimator is increasingly flat as
γn →∞, since in this case each weight tends to 1/n.

• A large window width reduces the variance (strong imposition of flatness), but increases the bias.

• A small window width reduces the bias, but makes very little use of information except points
that are in a small neighborhood of xt. Since relatively little information is used, the variance is

http://en.wikipedia.org/wiki/File:NonparRegrGaussianKernel.png


large when the window width is small.

• The standard normal density is a popular choice for K(.) and K∗(y, x), though there are possibly
better alternatives.

Choice of the window width: Cross-validation

The selection of an appropriate window width is important. One popular method is cross validation.
This consists of splitting the sample into two parts (e.g., 50%-50%). The first part is the “in sample”
data, which is used for estimation, and the second part is the “out of sample” data, used for evaluation
of the fit though RMSE or some other criterion. The steps are:

1. Split the data. The out of sample data is yout and xout.

2. Choose a window width γ.

3. With the in sample data, fit ŷoutt corresponding to each xoutt . This fitted value is a function of the
in sample data, as well as the evaluation point xoutt , but it does not involve youtt .

4. Repeat for all out of sample points.

5. Calculate RMSE(γ)

6. Go to step 2, or to the next step if enough window widths have been tried.

7. Select the γ that minimizes RMSE(γ) (Verify that a minimum has been found, for example by
plotting RMSE as a function of γ).



8. Re-estimate using the best γ and all of the data.

This same principle can be used to choose A and J in a Fourier form model.

20.4 Density function estimation

Kernel density estimation

The previous discussion suggests that a kernel density estimator may easily be constructed. We have
already seen how joint densities may be estimated. If were interested in a conditional density, for
example of y conditional on x, then the kernel estimate of the conditional density is simply

f̂y|x = f̂(x, y)
ĥ(x)

=
1
n

∑n
t=1

K∗[(y−yt)/γn,(x−xt)/γn]
γk+1
n

1
n

∑n
t=1

K[(x−xt)/γn]
γkn

= 1
γn

∑n
t=1K∗ [(y − yt) /γn, (x− xt) /γn]∑n

t=1K [(x− xt) /γn]

where we obtain the expressions for the joint and marginal densities from the section on kernel regres-
sion.



Semi-nonparametric maximum likelihood

Readings: Gallant and Nychka, Econometrica, 1987. For a Fortran program to do this and a useful
discussion in the user’s guide, see this link. See also Cameron and Johansson, Journal of Applied
Econometrics, V. 12, 1997.

MLE is the estimation method of choice when we are confident about specifying the density. Is is
possible to obtain the benefits of MLE when we’re not so confident about the specification? In part,
yes.

Suppose we’re interested in the density of y conditional on x (both may be vectors). Suppose that
the density f(y|x, φ) is a reasonable starting approximation to the true density. This density can be
reshaped by multiplying it by a squared polynomial. The new density is

gp(y|x, φ, γ) =
h2
p(y|γ)f(y|x, φ)
ηp(x, φ, γ)

where
hp(y|γ) =

p∑
k=0

γky
k

and ηp(x, φ, γ) is a normalizing factor to make the density integrate (sum) to one. Because h2
p(y|γ)/ηp(x, φ, γ)

is a homogenous function of θ it is necessary to impose a normalization to identify the parameters: γ0

http://www.econ.duke.edu/~get/snp.html


is set to 1. The normalization factor ηp(φ, γ) is calculated (following Cameron and Johansson) using

E(Y r) =
∞∑
y=0

yrfY (y|φ, γ)

=
∞∑
y=0

yr
[hp (y|γ)]2

ηp(φ, γ) fY (y|φ)

=
∞∑
y=0

p∑
k=0

p∑
l=0

yrfY (y|φ)γkγlykyl/ηp(φ, γ)

=
p∑

k=0

p∑
l=0

γkγl


∞∑
y=0

yr+k+lfY (y|φ)
 /ηp(φ, γ)

=
p∑

k=0

p∑
l=0

γkγlmk+l+r/ηp(φ, γ).

By setting r = 0 we get that the normalizing factor is
20.8

ηp(φ, γ) =
p∑

k=0

p∑
l=0

γkγlmk+l (20.8)

Recall that γ0 is set to 1 to achieve identification. The mr in equation 20.8 are the raw moments of
the baseline density. Gallant and Nychka (1987) give conditions under which such a density may be
treated as correctly specified, asymptotically. Basically, the order of the polynomial must increase as
the sample size increases. However, there are technicalities.

Similarly to Cameron and Johannson (1997), we may develop a negative binomial polynomial
(NBP) density for count data. The negative binomial baseline density may be written (see equation
18.1) as

fY (y|φ) = Γ(y + ψ)
Γ(y + 1)Γ(ψ)

(
ψ

ψ + λ

)ψ ( λ

ψ + λ

)y



where φ = {λ, ψ}, λ > 0 and ψ > 0. The usual means of incorporating conditioning variables x is
the parameterization λ = ex′β. When ψ = λ/α we have the negative binomial-I model (NB-I). When
ψ = 1/α we have the negative binomial-II (NP-II) model. For the NB-I density, V (Y ) = λ + αλ. In
the case of the NB-II model, we have V (Y ) = λ+ αλ2. For both forms, E(Y ) = λ.

The reshaped density, with normalization to sum to one, is

fY (y|φ, γ) = [hp (y|γ)]2

ηp(φ, γ)
Γ(y + ψ)

Γ(y + 1)Γ(ψ)

(
ψ

ψ + λ

)ψ ( λ

ψ + λ

)y
. (20.9)

To get the normalization factor, we need the moment generating function:

MY (t) = ψψ
(
λ− etλ+ ψ

)−ψ
. (20.10)

To illustrate, Figure 20.5 shows calculation of the first four raw moments of the NB density, calculated
using MuPAD, which is a Computer Algebra System that (used to be?) free for personal use. These
are the moments you would need to use a second order polynomial (p = 2). MuPAD will output
these results in the form of C code, which is relatively easy to edit to write the likelihood function
for the model. This has been done in NegBinSNP.cc, which is a C++ version of this model that can
be compiled to use with octave using the mkoctfile command. Note the impressive length of the
expressions when the degree of the expansion is 4 or 5! This is an example of a model that would be
difficult to formulate without the help of a program like MuPAD.

It is possible that there is conditional heterogeneity such that the appropriate reshaping should be
more local. This can be accomodated by allowing the γk parameters to depend upon the conditioning
variables, for example using polynomials.

Gallant and Nychka, Econometrica, 1987 prove that this sort of density can approximate a wide

http://www.mupad.org
http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/OctFiles/NegBinSNP.cc


Figure 20.5: Negative binomial raw moments



variety of densities arbitrarily well as the degree of the polynomial increases with the sample size.
This approach is not without its drawbacks: the sample objective function can have an extremely large
number of local maxima that can lead to numeric difficulties. If someone could figure out how to do
in a way such that the sample objective function was nice and smooth, they would probably get the
paper published in a good journal. Any ideas?

Here’s a plot of true and the limiting SNP approximations (with the order of the polynomial fixed)
to four different count data densities, which variously exhibit over and underdispersion, as well as
excess zeros. The baseline model is a negative binomial density.
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20.5 Examples

MEPS health care usage data

We’ll use the MEPS OBDV data to illustrate kernel regression and semi-nonparametric maximum
likelihood.

Kernel regression estimation

Let’s try a kernel regression fit for the OBDV data. The program OBDVkernel.m loads the MEPS
OBDV data, scans over a range of window widths and calculates leave-one-out CV scores, and plots the
fitted OBDV usage versus AGE, using the best window width. The plot is in Figure 20.6. Note that
usage increases with age, just as we’ve seen with the parametric models. Once could use bootstrapping
to generate a confidence interval to the fit.

Seminonparametric ML estimation and the MEPS data

Now let’s estimate a seminonparametric density for the OBDV data. We’ll reshape a negative bino-
mial density, as discussed above. The program EstimateNBSNP.m loads the MEPS OBDV data and
estimates the model, using a NB-I baseline density and a 2nd order polynomial expansion. The output
is:

OBDV

======================================================

http://pareto.uab.es/mcreel/Econometrics/Examples/Nonparametric/OBDVkernel.m
http://pareto.uab.es/mcreel/Econometrics/Examples/Nonparametric/EstimateNBSNP.m


Figure 20.6: Kernel fitted OBDV usage versus AGE



BFGSMIN final results

Used numeric gradient

------------------------------------------------------
STRONG CONVERGENCE
Function conv 1 Param conv 1 Gradient conv 1
------------------------------------------------------
Objective function value 2.17061
Stepsize 0.0065
24 iterations
------------------------------------------------------

param gradient change
1.3826 0.0000 -0.0000
0.2317 -0.0000 0.0000
0.1839 0.0000 0.0000
0.2214 0.0000 -0.0000
0.1898 0.0000 -0.0000
0.0722 0.0000 -0.0000
-0.0002 0.0000 -0.0000
1.7853 -0.0000 -0.0000
-0.4358 0.0000 -0.0000
0.1129 0.0000 0.0000

******************************************************
NegBin SNP model, MEPS full data set



MLE Estimation Results
BFGS convergence: Normal convergence

Average Log-L: -2.170614
Observations: 4564

estimate st. err t-stat p-value
constant -0.147 0.126 -1.173 0.241
pub. ins. 0.695 0.050 13.936 0.000
priv. ins. 0.409 0.046 8.833 0.000
sex 0.443 0.034 13.148 0.000
age 0.016 0.001 11.880 0.000
edu 0.025 0.006 3.903 0.000
inc -0.000 0.000 -0.011 0.991
gam1 1.785 0.141 12.629 0.000
gam2 -0.436 0.029 -14.786 0.000
lnalpha 0.113 0.027 4.166 0.000

Information Criteria
CAIC : 19907.6244 Avg. CAIC: 4.3619
BIC : 19897.6244 Avg. BIC: 4.3597
AIC : 19833.3649 Avg. AIC: 4.3456

******************************************************

Note that the CAIC and BIC are lower for this model than for the models presented in Table 18.3.
This model fits well, still being parsimonious. You can play around trying other use measures, using
a NP-II baseline density, and using other orders of expansions. Density functions formed in this way
may have MANY local maxima, so you need to be careful before accepting the results of a casual run.



Figure 20.7: Dollar-Euro

To guard against having converged to a local maximum, one can try using multiple starting values, or
one could try simulated annealing as an optimization method. If you uncomment the relevant lines
in the program, you can use SA to do the minimization. This will take a lot of time, compared to
the default BFGS minimization. The chapter on parallel computations might be interesting to read
before trying this.

Financial data and volatility

The data set rates contains the growth rate (100×log difference) of the daily spot $/euro and $/yen
exchange rates at New York, noon, from January 04, 1999 to February 12, 2008. There are 2291
observations. See the README file for details. Figures 20.7 and 20.8 show the data and their
histograms.

• at the center of the histograms, the bars extend above the normal density that best fits the data,
and the tails are fatter than those of the best fit normal density. This feature of the data is
known as leptokurtosis.

http://pareto.uab.es/mcreel/Econometrics/Examples/Nonparametric/SpotRate/rates
http://pareto.uab.es/mcreel/Econometrics/Examples/Nonparametric/SpotRate/README


Figure 20.8: Dollar-Yen

• in the series plots, we can see that the variance of the growth rates is not constant over time.
Volatility clusters are apparent, alternating between periods of stability and periods of more wild
swings. This is known as conditional heteroscedasticity. ARCH and GARCH well-known models
that are often applied to this sort of data.

• Many structural economic models often cannot generate data that exhibits conditional het-
eroscedasticity without directly assuming shocks that are conditionally heteroscedastic. It would
be nice to have an economic explanation for how conditional heteroscedasticity, leptokurtosis,
and other (leverage, etc.) features of financial data result from the behavior of economic agents,
rather than from a black box that provides shocks.

The Octave script kernelfit.m performs kernel regression to fit E(y2
t |y2

t−1,y
2
t−2), and generates the plots

in Figure 20.9.

• From the point of view of learning the practical aspects of kernel regression, note how the data
is compactified in the example script.

http://pareto.uab.es/mcreel/Econometrics/Examples/Nonparametric/SpotRate/kernelfit.m


Figure 20.9: Kernel regression fitted conditional second moments, Yen/Dollar and Euro/Dollar
(a) Yen/Dollar (b) Euro/Dollar

• In the Figure, note how current volatility depends on lags of the squared return rate - it is high
when both of the lags are high, but drops off quickly when either of the lags is low.

• The fact that the plots are not flat suggests that this conditional moment contain information
about the process that generates the data. Perhaps attempting to match this moment might be
a means of estimating the parameters of the dgp. We’ll come back to this later.

Limited information nonparametric filtering

Add discussion from JEF paper.



20.6 Exercises

1. In Octave, type ”edit kernel_example”.

(a) Look this script over, and describe in words what it does.

(b) Run the script and interpret the output.

(c) Experiment with different bandwidths, and comment on the effects of choosing small and
large values.

2. In Octave, type ”help kernel_regression”.

(a) How can a kernel fit be done without supplying a bandwidth?

(b) How is the bandwidth chosen if a value is not provided?

(c) What is the default kernel used?

3. Using the Octave script OBDVkernel.m as a model, plot kernel regression fits for OBDV visits
as a function of income and education.

http://pareto.uab.es/mcreel/Econometrics/Examples/Nonparametric/OBDVkernel.m


Chapter 21

Quantile regression

References: Cameron and Trivedi, Chapter 4, and Chernozhukov’s MIT OpenCourseWare notes, lec-
ture 8 Chernozhukov’s quantile reg notes.

This chapter gives a brief outline of quantile regression. The intention is to learn what quantile
regression is, and its potential uses, but without going into the topic in depth.

21.1 Quantiles of the linear regression model

The classical linear regression model yt = x′tβ + εt with normal errors implies that the distribution of
yt conditional on xt is

yt ∼ N(x′tβ, σ2)

The α quantile of Y , conditional on X = x (notation: Yα|X=x) is the smallest value z such that
Pr(Y ≤ z|X = x) = α. If FY |X=x is the conditional CDF of Y, then the α-conditional quantile is
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Yα|X=x = inf y : α ≤ FY |X=x(y). When α = 0.5, we are talking about the conditional median Y0.5|X=x,
but we could be interested in other quantiles, too.

Note that Pr(Y < x′β|X = x) = 0.5 when the model follows the classical assumptions with
normal errors, because the normal distribution is symmetric about the mean, so Y0.5|X=x = x′β. One
can estimate the conditional median just by using the fitted conditional mean, because the mean and
median are the same given normality.

How about other quantiles? We have y = x′β + ε and ε ∼ N(0, σ2). Conditional on x, x′β is
given, and the distribution of ε does not depend on x. Note that ε/σ is standard normal, and the α
quantile of ε/σ is simply the inverse of the standard normal CDF evaulated at α, Φ−1(α), where Φ
is the standard normal CDF function. The probit function Φ−1(α) is tabulated (or can be found in
Octave using the norminv function). It is plotted in Figure 21.1.

The α quantile of ε is σΦ−1(α). Thus, the α conditional quantile of y is Yα|X=x = x′β+σΦ−1(α).
Some quantiles are pictured in Figure 21.2. These give confidence intervals for the the fitted value,
x′β.

• The conditional quantiles for the classical model are linear functions of x

• all have the same slope: the only thing that changes with α is the intercept σΦ−1(α).

• If the error is heteroscedastic, so that σ = σ(x), quantiles can have different slopes. Draw a
picture.



Figure 21.1: Inverse CDF for N(0,1)



Figure 21.2: Quantiles of classical linear regression model

21.2 Fully nonparametric conditional quantiles

To compute conditional quantiles for the classical linear model, we used the assumption of normality.
Can we estimate conditional quantiles without making distributional assumptions? Yes, we can! (nod
to Obama). You can do fully nonparametric conditional density estimation, as in Chapter 20, and use
the fitted conditional density to compute quantiles.

• Note that estimating quantiles where α is close to 0 or 1 is difficult, because you have few
observations that lie in the neighborhood of the quantile, so you should expect a large variance
if you go the nonparametric route. For more central quantiles, like the median, this will be less
of a problem.

• For this reason, we may go the semi-parametric route, which imposes more structure. When
people talk about quantile regression, they usually mean the semi-parametric approach.



21.3 Quantile regression as a semi-parametric estimator

The most widely used method does not take either of the extreme positions, it is not fully parametric,
like the linear regression model with known distribution of errors, but some parametric restrictions
are made, to improve efficiency compared to the fully nonparametric approach.

• The assumption is that the α-conditional quantile of the dependent variable Y is a linear function
of the conditioning variables X: Yα|X=x = x′βα.

• This is a generalization of what we get from the classical model with normality, where the slopes
of the quantiles with respect to the regressors are constant for all α.

– For the classical model with normality, ∂
∂xYα|X=x = β.

– With the assumption of linear quantiles without distributional assumptions, ∂
∂xYα|X=x = βα,

so the slopes are allowed to change with α.

• This is a step in the direction of flexibility, but it also means we need to estimate many param-
eters if we’re interested in many quantiles: there may be an efficiency loss due to using many
parameters to avoid distributional assumptions.

• The question is how to estimate βα when we don’t make distributional assumptions.

It turns out that the problem can be expressed as an extremum estimator, β̂α = arg min sn(β) where

sn(β) =
n∑
i=1

[1(yi ≥ x′iβα)α + 1(yi < x′iβα)(1− α)] |yi − x′iβα|



First, suppose that α = 0.5, so we are estimating the median. Then the objective simplifies to
minimizing the absolute deviations:

sn(β) =
n∑
i=1
|yi − x′iβα|

The presence of the weights in the general version accounts for the fact that if we’re estimating the
α = 0.1 quantile, we expect 90% of the yi to be greater than x′iβα, and only 10% to be smaller. We
need to downweight the likely events and upweight the unlikely events so that the objective function
minimizes at the appropriate place.

• One note is that median regression may be a useful means of dealing with data that satisfies the
classical assumptions, except for contamination by outliers. In class, use Gretl to show this.

• Note that the quantile regression objective function is discontinuous. Minimization can be done
quickly using linear programming. BFGS won’t work.

• the asymptotic distribution is normal, with the sandwich form typical of extremum estimators.
Estimation of the terms is not completely straightforward, so methods like bootstrapping may
be preferable.

• the asymptotic variance depends upon which quantile we’re estimating. When α is close to 0 or
1, the asymptotic variance becomes large, and the asymptotic appoximation is unreliable for the
small sample distribution. Extreme quantiles are hard to estimate with precision, because the
data is sparse in those regions.

The artificial data set quantile.gdt allows you to explore quantile regression with GRETL, and to see
how median regression can help to deal with data contamination.

http://pareto.uab.es/mcreel/Econometrics/Examples/Quantile/quantile.gdt


Figure 21.3: Quantile regression results
(a) homoscedastic data (b) heteroscedastic data

• If you do quantile regression of the variable y versus x, we are in a situation where the assumptions
of the classical model hold. Quantiles all have approximately the same slope (the true value is
1).

• With heteroscedastic data, the quantiles have different slopes.

• see Figure 21.3



Chapter 22

Simulation-based methods for
estimation and inference

Readings: Gourieroux and Monfort (1996) Simulation-Based Econometric Methods (Oxford Univer-
sity Press). There are many articles. Some of the seminal papers are Gallant and Tauchen (1996),
“Which Moments to Match?”, ECONOMETRIC THEORY, Vol. 12, 1996, pages 657-681; Gourieroux,
Monfort and Renault (1993), “Indirect Inference,” J. Apl. Econometrics; Pakes and Pollard (1989)
Econometrica; McFadden (1989) Econometrica.

Simulation-based methods use computer power as a major input to do econometrics. Of course,
computer power has always been used, but when intensive use of computer power is contemplated, it is
possible to do things that are otherwise infeasible. Examples include obtaining more accurate results
that what asymptotic theory gives us, using methods like bootstrapping, or to perform estimation using
simulation, when analytic expressions for objective functions that define estimators are not available.
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22.1 Motivation

Simulation methods are of interest when the DGP is fully characterized by a parameter vector, so that
simulated data can be generated, but the likelihood function and moments of the observable varables
are not calculable, so that MLE or GMM estimation is not possible. Many moderately complex models
result in intractible likelihoods or moments, as we will see. Simulation-based estimation methods open
up the possibility to estimate truly complex models. The desirability introducing a great deal of
complexity may be an issue1, but it least it becomes a possibility.

Example: Multinomial and/or dynamic discrete response models

(following McFadden, 1989)
Let y∗i be a latent random vector of dimension m. Suppose that

y∗i = Xiβ + εi

where Xi is m×K. Suppose that
εi ∼ N(0,Ω) (22.1)

Henceforth drop the i subscript when it is not needed for clarity.

• y∗ is not observed. Rather, we observe a many-to-one mapping

y = τ(y∗)
1Remember that a model is an abstraction from reality, and abstraction helps us to isolate the important features of a phenomenon.



This mapping is such that each element of y is either zero or one (in some cases only one element
will be one).

• Define
Ai = A(yi) = {y∗|yi = τ(y∗)}

Suppose random sampling of (yi, Xi). In this case the elements of yi may not be independent of
one another (and clearly are not if Ω is not diagonal). However, yi is independent of yj, i 6= j.

• Let θ = (β′, (vec∗Ω)′)′ be the vector of parameters of the model. The contribution of the ith

observation to the likelihood function is

pi(θ) =
∫
Ai
n(y∗i −Xiβ,Ω)dy∗i

where
n(ε,Ω) = (2π)−M/2 |Ω|−1/2 exp

−ε′Ω−1ε

2


is the multivariate normal density of an M -dimensional random vector. The log-likelihood
function is

lnL(θ) = 1
n

n∑
i=1

ln pi(θ)

and the MLE θ̂ solves the score equations

1
n

n∑
i=1

gi(θ̂) = 1
n

n∑
i=1

Dθpi(θ̂)
pi(θ̂)

≡ 0.

• The problem is that evaluation of Li(θ) and its derivative w.r.t. θ by standard methods of



numeric integration such as quadrature is computationally infeasible when m (the dimension of
y) is higher than 3 or 4 (as long as there are no restrictions on Ω).

• The mapping τ(y∗) has not been made specific so far. This setup is quite general: for different
choices of τ(y∗) it nests the case of dynamic binary discrete choice models as well as the case of
multinomial discrete choice (the choice of one out of a finite set of alternatives).

– Multinomial discrete choice is illustrated by a (very simple) job search model. We have
cross sectional data on individuals’ matching to a set of m jobs that are available (one of
which is unemployment). The utility of alternative j is

uj = Xjβ + εj

Utilities of jobs, stacked in the vector ui are not observed. Rather, we observe the vector
formed of elements

yj = 1 [uj > uk,∀k ∈ m, k 6= j]

Only one of these elements is different than zero.

– Dynamic discrete choice is illustrated by repeated choices over time between two alterna-
tives. Let alternative j have utility

ujt = Wjtβ − εjt,
j ∈ {1, 2}
t ∈ {1, 2, ...,m}



Then

y∗ = u2 − u1

= (W2 −W1)β + ε2 − ε1

≡ Xβ + ε

Now the mapping is (element-by-element)

y = 1 [y∗ > 0] ,

that is yit = 1 if individual i chooses the second alternative in period t, zero otherwise.

Example: Marginalization of latent variables

Economic data often presents substantial heterogeneity that may be difficult to model. A possibility
is to introduce latent random variables. This can cause the problem that there may be no known
closed form for the distribution of observable variables after marginalizing out the unobservable latent
variables. For example, count data (that takes values 0, 1, 2, 3, ...) is often modeled using the Poisson
distribution

Pr(y = i) = exp(−λ)λi
i!

The mean and variance of the Poisson distribution are both equal to λ :

E(y) = V (y) = λ.



Often, one parameterizes the conditional mean as

λi = exp(Xiβ).

This ensures that the mean is positive (as it must be). Estimation by ML is straightforward.
Often, count data exhibits “overdispersion” which simply means that

V (y) > E(y).

If this is the case, a solution is to use the negative binomial distribution rather than the Poisson. An
alternative is to introduce a latent variable that reflects heterogeneity into the specification:

λi = exp(Xiβ + ηi)

where ηi has some specified density with support S (this density may depend on additional parameters).
Let dµ(ηi) be the density of ηi. In some cases, the marginal density of y

Pr(y = yi|Xi) =
∫
S

exp [− exp(Xiβ + ηi)] [exp(Xiβ + ηi)]yi
yi!

dµ(ηi)

will have a closed-form solution (one can derive the negative binomial distribution in this way if η
has an exponential distribution - see equation 18.1), but often this will not be possible. In this case,
simulation is a means of calculating Pr(y = i|Xi), which is then used to do ML estimation. This would
be an example of the Simulated Maximum Likelihood (SML) estimation.

• In this case, since there is only one latent variable, quadrature is probably a better choice.



However, a more flexible model with heterogeneity would allow all parameters (not just the
constant) to vary. For example

Pr(y = yi) =
∫
S

exp [− exp(Xiβi)] [exp(Xiβi)]yi
yi!

dµ(βi)

entails a K = dim βi-dimensional integral, which will not be evaluable by quadrature when K

gets large.

Estimation of models specified in terms of stochastic differential equations

It is often convenient to formulate models in terms of continuous time using differential equations. An
example was the jump-diffusion model discussed in Section 15.4. A realistic model should account for
exogenous shocks to the system, which can be done by assuming a random component. This leads to
a model that is expressed as a system of stochastic differential equations. Consider the process

dyt = g(θ, yt)dt+ h(θ, yt)dWt

which is assumed to be stationary. {Wt} is a standard Brownian motion (Weiner process), such that

W (T ) =
∫ T

0
dWt ∼ N(0, T )

Brownian motion is a continuous-time stochastic process such that

• W (0) = 0

• [W (s)−W (t)] ∼ N(0, s− t)



• [W (s)−W (t)] and [W (j)−W (k)] are independent for s > t > j > k. That is, non-overlapping
segments are independent.

One can think of Brownian motion the accumulation over time of independent normally distributed
shocks, each with an infinitesimal variance.

• The function g(θ, yt) is the deterministic part.

• h(θ, yt) determines the variance of the shocks.

To estimate a model of this sort, we typically have data that are assumed to be observations of yt in
discrete points y1, y2, ...yT . That is, though yt is a continuous process it is observed in discrete time.

To perform inference on θ, direct ML or GMM estimation is not usually feasible, because one
cannot, in general, deduce the transition density f(yt|yt−1, θ). This density is necessary to evaluate the
likelihood function or to evaluate moment conditions (which are based upon expectations with respect
to this density).

• A typical solution is to “discretize” the model, by which we mean to find a discrete time approx-
imation to the model. The discretized version of the model is

yt − yt−∆ = g̃(φ, yt−1)∆ +
√

∆h̃(φ, yt−1)εt
εt ∼ N(0, 1)

where ∆ is a discrete time interval

– I have changed the parameter from θ to φ to emphasize that this is an approximation,
which will be more or less good. As such “ML” estimation of φ is actually quasi-maximum



likelihood estimation. When actual data is available on a daily, say, basis, then you could
set ∆ = 1, and use the discretized model to do QML estimation. However, the time interval
∆ may be too large to give an accurate approximation to the model, and if this is the case,
the QML estimator could suffer from a large bias for estimation of the original parameter,
θ.

– Nevertheless, the approximation shouldn’t be too bad, especially if ∆ is small. For example,
one could simulate the model at a frequency of 1 minute, saving every 1440th point on the
path (60×24 = 1440), which would give a good approximation of the evolution of the daily
observations. The ”Euler approximation” method for simulating such models is based upon
this fact. Simulation-based inference allows for direct inference on θ, which is what we
would like to do.

• The important point about these three examples is that computational difficulties prevent direct
application of ML, GMM, etc. Nevertheless the model is fully specified in probabilistic terms up
to a parameter vector. This means that the model is simulable, conditional on the parameter
vector.

22.2 Simulated maximum likelihood (SML)

For simplicity, consider cross-sectional data. An ML estimator solves

θ̂ML = arg max sn(θ) = 1
n

n∑
t=1

ln p(yt|Xt, θ)



where p(yt|Xt, θ) is the density function of the tth observation. When p(yt|Xt, θ) does not have a known
closed form, θ̂ML is an infeasible estimator. However, it may be possible to define a random function
such that

Eνf(ν, yt, Xt, θ) = p(yt|Xt, θ)

where the density of ν is known. If this is the case, the simulator

p̃ (yt, Xt, θ) = 1
H

H∑
s=1

f(νts, yt, Xt, θ)

is unbiased for p(yt|Xt, θ).

• The SML simply substitutes p̃ (yt, Xt, θ) in place of p(yt|Xt, θ) in the log-likelihood function, that
is

θ̂SML = arg max sn(θ) = 1
n

n∑
i=1

ln p̃ (yt, Xt, θ)

Example: multinomial probit

Recall that the utility of alternative j is

uj = Xjβ + εj

and the vector y is formed of elements

yj = 1 [uj > uk, k ∈ m, k 6= j]



The problem is that Pr(yj = 1|θ) can’t be calculated when m is larger than 4 or 5. However, it is easy
to simulate this probability.

• Draw ε̃i from the distribution N(0,Ω)

• Calculate ũi = Xiβ + ε̃i (where Xi is the matrix formed by stacking the Xij)

• Define ỹij = 1 [uij > uik,∀k ∈ m, k 6= j]

• Repeat this H times and define

π̃ij =
∑H
h=1 ỹijh
H

• Define π̃i as the m-vector formed of the π̃ij. Each element of π̃i is between 0 and 1, and the
elements sum to one.

• Now p̃ (yi, Xi, θ) = y′iπ̃i

• The SML multinomial probit log-likelihood function is

lnL(β,Ω) = 1
n

n∑
i=1

y′i ln p̃ (yi, Xi, θ)

This is to be maximized w.r.t. β and Ω.
Notes:

• The H draws of ε̃i are draw only once and are used repeatedly during the iterations used to find
β̂ and Ω̂. The draws are different for each i. If the ε̃i are re-drawn at every iteration the estimator
will not converge.



• The log-likelihood function with this simulator is a discontinuous function of β and Ω. This
does not cause problems from a theoretical point of view since it can be shown that lnL(β,Ω) is
stochastically equicontinuous. However, it does cause problems if one attempts to use a gradient-
based optimization method such as Newton-Raphson.

• It may be the case, particularly if few simulations, H, are used, that some elements of π̃i are
zero. If the corresponding element of yi is equal to 1, there will be a log(0) problem.

• Solutions to discontinuity:

– 1) use an estimation method that doesn’t require a continuous and differentiable objective
function, for example, simulated annealing. This is computationally costly.

– 2) Smooth the simulated probabilities so that they are continuous functions of the param-
eters. For example, apply a kernel transformation such as

ỹij = Φ
(
A×

[
uij −

mmax
k=1

uik
])

+ .5× 1
[
uij = mmax

k=1
uik

]

where A is a large positive number. This approximates a step function such that ỹij is very
close to zero if uij is not the maximum, and ỹij is very close to 1 if uij is the maximum.
This makes ỹij a continuous function of β and Ω, so that p̃ij and therefore lnL(β,Ω)
will be continuous and differentiable. Consistency requires that A(n) p→ ∞, so that the
approximation to a step function becomes arbitrarily close as the sample size increases.
There are alternative methods (e.g., Gibbs sampling) that may work better, but this is too
technical to discuss here.



• To solve to log(0) problem, one possibility is to search the web for the slog function. Also,
increase H if this is a serious problem.

Properties

The properties of the SML estimator depend on how H is set. The following is taken from Lee
(1995) “Asymptotic Bias in Simulated Maximum Likelihood Estimation of Discrete Choice Models,”
Econometric Theory, 11, pp. 437-83.

Theorem 69. [Lee] 1) if limn→∞ n
1/2/H = 0, then

√
n
(
θ̂SML − θ0

)
d→ N(0, I−1(θ0))

2) if limn→∞ n
1/2/H = λ, λ a finite constant, then

√
n
(
θ̂SML − θ0

)
d→ N(B, I−1(θ0))

where B is a finite vector of constants.

• This means that the SML estimator is asymptotically biased if H doesn’t grow faster than n1/2.

• The varcov is the typical inverse of the information matrix, so that as long as H grows fast
enough the estimator is consistent and fully asymptotically efficient.



22.3 Method of simulated moments (MSM)

Suppose we have a DGP(y|x, θ) which is simulable given θ, but is such that the density of y is not
calculable.

Once could, in principle, base a GMM estimator upon the moment conditions

mt(θ) = [K(yt, xt)− k(xt, θ)] zt

where
k(xt, θ) =

∫
K(yt, xt)p(y|xt, θ)dy,

zt is a vector of instruments in the information set and p(y|xt, θ) is the density of y conditional on xt.
The problem is that this density is not available.

• However k(xt, θ) is readily simulated using

k̃ (xt, θ) = 1
H

H∑
h=1

K(ỹht , xt)

• By the law of large numbers, k̃ (xt, θ) a.s.→ k (xt, θ) , as H → ∞, which provides a clear intuitive
basis for the estimator, though in fact we obtain consistency even for H finite, since a law of
large numbers is also operating across the n observations of real data, so errors introduced by
simulation cancel themselves out.

• This allows us to form the moment conditions

m̃t(θ) =
[
K(yt, xt)− k̃ (xt, θ)

]
zt (22.2)



where zt is drawn from the information set. As before, form

m̃(θ) = 1
n

n∑
i=1

m̃t(θ)

= 1
n

n∑
i=1

K(yt, xt)−
1
H

H∑
h=1

k(ỹht , xt)
 zt (22.3)

with which we form the GMM criterion and estimate as usual. Note that the unbiased simulator
k(ỹht , xt) appears linearly within the sums.

Properties

Suppose that the optimal weighting matrix is used. McFadden (ref. above) and Pakes and Pollard
(refs. above) show that the asymptotic distribution of the MSM estimator is very similar to that of
the infeasible GMM estimator. In particular, assuming that the optimal weighting matrix is used, and
for H finite,

√
n
(
θ̂MSM − θ0

)
d→ N

[
0,
(

1 + 1
H

) (
D∞Ω−1D′∞

)−1
]

(22.4)

where (D∞Ω−1D′∞)−1 is the asymptotic variance of the infeasible GMM estimator.

• That is, the asymptotic variance is inflated by a factor 1 + 1/H. For this reason the MSM
estimator is not fully asymptotically efficient relative to the infeasible GMM estimator, for H
finite, but the efficiency loss is small and controllable, by setting H reasonably large.

• The estimator is asymptotically unbiased even for H = 1. This is an advantage relative to SML.

• If one doesn’t use the optimal weighting matrix, the asymptotic varcov is just the ordinary GMM



varcov, inflated by 1 + 1/H.

• The above presentation is in terms of a specific moment condition based upon the conditional
mean. The MSM can be applied to moment conditions of other forms, too.

– A leading example is Indirect Inference, where we set mn(θ) = φ̂- 1
S

∑
φ̃s(θ), and then we

just do ordinary GMM. Here, φ̂ is an extremum estimator corresponding to some auxiliary
model. The φ̃s(θ) are the same extremum estimator, applied to simulated data generated
from the model. The logic is that φ̂ will converge to a pseudo-true value, and φ̃s(θ) will
converge to another pseudo-true value, depending on the value of θ that generated the data.
When θ = θ0, the two pseudo-true values will be the same. Trying to make the average of
the simulated estimators as close as possible to the estimator generated by the real data
will cause the MSM estimator to be consistent, given identification.

– For such an estimator to have good efficiency, we need the auxiliary model to fit well: it
should pick up the relevant features of the data.

– a drawback of the II estimator is that the auxiliary model must be estimated many times.
This is not a problem if it’s a simple linear model, but it could be a problem if it’s more
complicated. For efficiency, we need a good fit, and a simple linear model may not provide
this. The EMM estimator discussed below is asymptotically equivalent to II, and it requires
the auxiliary model to be estimated only once.



Comments

Why is SML inconsistent ifH is finite, while MSM is? The reason is that SML is based upon an average
of logarithms of an unbiased simulator (the densities of the observations). To use the multinomial
probit model as an example, the log-likelihood function is

lnL(β,Ω) = 1
n

n∑
i=1

y′i ln pi(β,Ω)

The SML version is
lnL(β,Ω) = 1

n

n∑
i=1

y′i ln p̃i(β,Ω)

The problem is that
E ln(p̃i(β,Ω)) 6= ln(E p̃i(β,Ω))

in spite of the fact that
E p̃i(β,Ω) = pi(β,Ω)

due to the fact that ln(·) is a nonlinear transformation. The only way for the two to be equal (in the
limit) is if H tends to infinite so that p̃ (·) tends to p (·).

The reason that MSM does not suffer from this problem is that in this case the unbiased simulator
appears linearly within every sum of terms, and it appears within a sum over n (see equation [22.3]).
Therefore the SLLN applies to cancel out simulation errors, from which we get consistency. That is,



using simple notation for the random sampling case, the moment conditions

m̃(θ) = 1
n

n∑
i=1

K(yt, xt)−
1
H

H∑
h=1

k(ỹht , xt)
 zt (22.5)

= 1
n

n∑
i=1

k(xt, θ0) + εt −
1
H

H∑
h=1

[k(xt, θ) + ε̃ht]
 zt (22.6)

converge almost surely to
m̃∞(θ) =

∫ [
k(x, θ0)− k(x, θ)

]
z(x)dµ(x).

(note: zt is assume to be made up of functions of xt). The objective function converges to

s∞(θ) = m̃∞(θ)′Ω−1
∞ m̃∞(θ)

which obviously has a minimum at θ0, henceforth consistency.

• If you look at equation 22.6 a bit, you will see why the variance inflation factor is (1 + 1
H ).

22.4 Efficient method of moments (EMM)

The choice of which moments upon which to base a GMM estimator can have very pronounced effects
upon the efficiency of the estimator.

• A poor choice of moment conditions may lead to very inefficient estimators, and can even cause
identification problems (as we’ve seen with the GMM problem set).

• The drawback of the above approach MSM is that the moment conditions used in estimation are



selected arbitrarily. The asymptotic efficiency of the estimator may be low.

• The asymptotically optimal choice of moments would be the score vector of the likelihood func-
tion,

mt(θ) = Dθ ln pt(θ | It)

As before, this choice is unavailable.

The efficient method of moments (EMM) (see Gallant and Tauchen (1996), “Which Moments to
Match?”, ECONOMETRIC THEORY, Vol. 12, 1996, pages 657-681) seeks to provide moment condi-
tions that closely mimic the score vector. If the approximation is very good, the resulting estimator
will be very nearly fully efficient.

The DGP is characterized by random sampling from the density

p(yt|xt, θ0) ≡ pt(θ0)

We can define an auxiliary model, called the “score generator”, which simply provides a (misspec-
ified) parametric density

f(y|xt, λ) ≡ ft(λ)

• This density is known up to a parameter λ. We assume that this density function is calculable.
Therefore quasi-ML estimation is possible. Specifically,

λ̂ = arg max
Λ

sn(λ) = 1
n

n∑
t=1

ln ft(λ).

• After determining λ̂ we can calculate the score functions Dλ ln f(yt|xt, λ̂).



• The important point is that even if the density is misspecified, there is a pseudo-true λ0 for
which the true expectation, taken with respect to the true but unknown density of y, p(y|xt, θ0),
and then marginalized over x is zero:

∃λ0 : EXEY |X
[
Dλ ln f(y|x, λ0)

]
=
∫
X

∫
Y |X

Dλ ln f(y|x, λ0)p(y|x, θ0)dydµ(x) = 0

• We have seen in the section on QML that λ̂ p→ λ0; this suggests using the moment conditions

mn(θ, λ̂) = 1
n

n∑
t=1

∫
Dλ ln ft(λ̂)pt(θ)dy (22.7)

• These moment conditions are not calculable, since pt(θ) is not available, but they are simulable
using

m̃n(θ, λ̂) = 1
n

n∑
t=1

1
H

H∑
h=1

Dλ ln f(ỹht |xt, λ̂)

where ỹht is a draw from DGP (θ), holding xt fixed. By the LLN and the fact that λ̂ converges
to λ0,

m̃∞(θ0, λ0) = 0.

This is not the case for other values of θ, assuming that λ0 is identified.

• The advantage of this procedure is that if f(yt|xt, λ) closely approximates p(y|xt, θ), then m̃n(θ, λ̂)
will closely approximate the optimal moment conditions which characterize maximum likelihood
estimation, which is fully efficient.

• If one has prior information that a certain density approximates the data well, it would be a



good choice for f(·).

• If one has no density in mind, there exist good ways of approximating unknown distributions
parametrically: Philips’ ERA’s (Econometrica, 1983) and Gallant and Nychka’s (Econometrica,
1987) SNP density estimator which we saw before. Since the SNP density is consistent, the
efficiency of the indirect estimator is the same as the infeasible ML estimator.

Optimal weighting matrix

I will present the theory for H finite, and possibly small. This is done because it is sometimes
impractical to estimate with H very large. Gallant and Tauchen give the theory for the case of H so
large that it may be treated as infinite (the difference being irrelevant given the numerical precision
of a computer). The theory for the case of H infinite follows directly from the results presented here.

The moment condition m̃(θ, λ̂) depends on the pseudo-ML estimate λ̂. We can apply Theorem 31
to conclude that

√
n
(
λ̂− λ0

)
d→ N

[
0,J (λ0)−1I(λ0)J (λ0)−1] (22.8)

If the density f(yt|xt, λ̂) were in fact the true density p(y|xt, θ), then λ̂ would be the maximum likelihood
estimator, and J (λ0)−1I(λ0) would be an identity matrix, due to the information matrix equality.
However, in the present case we assume that f(yt|xt, λ̂) is only an approximation to p(y|xt, θ), so there
is no cancellation.

Recall that J (λ0) ≡ p lim
(

∂2

∂λ∂λ′sn(λ
0)
)
. Comparing the definition of sn(λ) with the definition of

the moment condition in Equation 22.7, we see that

J (λ0) = Dλ′m(θ0, λ0).



As in Theorem 31,

I(λ0) = lim
n→∞ E

n ∂sn(λ)
∂λ

∣∣∣∣∣∣
λ0

∂sn(λ)
∂λ′

∣∣∣∣∣∣
λ0

 .
In this case, this is simply the asymptotic variance covariance matrix of the moment conditions, Ω.
Now take a first order Taylor’s series approximation to

√
nmn(θ0, λ̂) about λ0 :

√
nm̃n(θ0, λ̂) =

√
nm̃n(θ0, λ0) +

√
nDλ′m̃(θ0, λ0)

(
λ̂− λ0

)
+ op(1)

First consider
√
nm̃n(θ0, λ0). It is straightforward but somewhat tedious to show that the asymp-

totic variance of this term is 1
H I∞(λ0).

Next consider the second term
√
nDλ′m̃(θ0, λ0)

(
λ̂− λ0

)
. Note that Dλ′m̃n(θ0, λ0) a.s.→ J (λ0), so we

have
√
nDλ′m̃(θ0, λ0)

(
λ̂− λ0

)
=
√
nJ (λ0)

(
λ̂− λ0

)
, a.s.

But noting equation 22.8
√
nJ (λ0)

(
λ̂− λ0

)
a∼ N

[
0, I(λ0)

]
Now, combining the results for the first and second terms,

√
nm̃n(θ0, λ̂) a∼ N

[
0,
(

1 + 1
H

)
I(λ0)

]

Suppose that Î(λ0) is a consistent estimator of the asymptotic variance-covariance matrix of the
moment conditions. This may be complicated if the score generator is a poor approximator, since the
individual score contributions may not have mean zero in this case (see the section on QML) . Even
if this is the case, the individuals means can be calculated by simulation, so it is always possible to



consistently estimate I(λ0) when the model is simulable. On the other hand, if the score generator
is taken to be correctly specified, the ordinary estimator of the information matrix is consistent.
Combining this with the result on the efficient GMM weighting matrix in Theorem 47, we see that
defining θ̂ as

θ̂ = arg min
Θ
mn(θ, λ̂)′

[(
1 + 1

H

)
Î(λ0)

]−1
mn(θ, λ̂)

is the GMM estimator with the efficient choice of weighting matrix.

• If one has used the Gallant-Nychka ML estimator as the auxiliary model, the appropriate weight-
ing matrix is simply the information matrix of the auxiliary model, since the scores are uncorre-
lated. (e.g., it really is ML estimation asymptotically, since the score generator can approximate
the unknown density arbitrarily well).

Asymptotic distribution

Since we use the optimal weighting matrix, the asymptotic distribution is as in Equation 14.4, so we
have (using the result in Equation 22.8):

√
n
(
θ̂ − θ0

)
d→ N

0,
D∞

[(
1 + 1

H

)
I(λ0)

]−1
D′∞

−1 ,
where

D∞ = lim
n→∞ E

[
Dθm

′
n(θ0, λ0)

]
.



This can be consistently estimated using

D̂ = Dθm
′
n(θ̂, λ̂)

Diagnostic testing

The fact that
√
nmn(θ0, λ̂) a∼ N

[
0,
(

1 + 1
H

)
I(λ0)

]

implies that
nmn(θ̂, λ̂)′

[(
1 + 1

H

)
I(λ̂)

]−1
mn(θ̂, λ̂) a∼ χ2(q)

where q is dim(λ) − dim(θ), since without dim(θ) moment conditions the model is not identified, so
testing is impossible. One test of the model is simply based on this statistic: if it exceeds the χ2(q)
critical point, something may be wrong (the small sample performance of this sort of test would be a
topic worth investigating).

• Information about what is wrong can be gotten from the pseudo-t-statistics:
diag [(1 + 1

H

)
I(λ̂)

]1/2−1√
nmn(θ̂, λ̂)

can be used to test which moments are not well modeled. Since these moments are related to
parameters of the score generator, which are usually related to certain features of the model,
this information can be used to revise the model. These aren’t actually distributed as N(0, 1),
since

√
nmn(θ0, λ̂) and

√
nmn(θ̂, λ̂) have different distributions (that of

√
nmn(θ̂, λ̂) is somewhat



more complicated). It can be shown that the pseudo-t statistics are biased toward nonrejection.
See Gourieroux et. al. or Gallant and Long, 1995, for more details.

22.5 Indirect likelihood inference

This method is something I’ve been working on for the last few years with Dennis Kristensen. The
main reference is Creel and Kristensen, 2013. The method is related to ”Approximate Bayesian
Computing”. Our paper adds some formal results that relates the idea to GMM, and which gives the
first applications in economics. It is a very useful method, in my opinion. We have used it to estimate
complicated models such as DSGE models and continuous time jump diffusions, with good success. It
combines simulation based estimation, nonparametric fitting, and Bayesian methods. The following is
a brief description, and an example.

Suppose we have a fully specified model indexed by a parameter θ ∈ Θ ⊂ Rk. Given a sample
Yn = (y1, ..., yn) generated at the unknown true parameter value θ0, the generalized method of moments
estimator is based on a vector of statistics Zn = Zn (Yn), that lead to moment conditions mn(θ) =
Zn−Eθ(Zn), where Eθ indicates expectations under the model. In a similar vein, Creel and Kristensen
(CK13) propose a Bayesian indirect likelihood (BIL) estimator

θ̂BIL = E(θ|Zn) =
∫

Θ
θfn (θ|Zn) dθ, (22.9)

where, for some prior density π(θ) on the parameter space Θ, fn (θ|Zn) is the posterior distribution
given by

fn (θ|Zn) = fn (Zn, θ)
fn (Zn)

= fn(Zn|θ)π (θ)∫
Θ fn(Zn|θ)π (θ) dθ.

http://econpapers.repec.org/paper/aubautbar/931.13.htm


This is very much like the widely used Bayesian posterior mean, except that the likelihood is formulated
in terms of the density of the statistic, fn(Zn|θ), rather than the full sample. Advantages of the BIL
estimator over GMM are the avoidance of optimization, avoidance of the need to compute the efficient
weight matrix, and higher order efficiency relative to the GMM estimator that uses the optimal weight
matrix (CK13).

Computation of the BIL estimator requires knowledge of fn(Zn|θ), which is normally not known.
Just as the simulated method of moments may be required when GMM is not feasible, simulation and
nonparametric regression may be used to compute a simulated BIL (SBIL) estimator. The method
explored in this paper is k−nearest neighbors (KNN) nonparametric regression. This is implemented
as follows: Make i.i.d. draws θs, s = 1, ..., S, from the pseudo-prior density π(θ), for each draw generate
a sample Yn(θs) from the model at this parameter value, and then compute the corresponding statistic
Zs
n = Z(Yn(θs)), s = 1, ..., S. Let ZS = {Zs

n}, s = 1, 2, ..., S be the set of S draws of the statistic.
Given the i.i.d. draws (θs, Zs

n), s = 1, ...S, we can obtain the SBIL estimator using

θ̂SBIL = ÊS [θ|Zn] =
∑S
s=1 θ

sKh (Zs
n − Zn)∑S

s=1Kh (Zs
n − Zn)

. (22.10)

whereKh(z) ≥ 0 is a kernel function that depends on a bandwidth parameter h. This is most obviously
a kernel regression estimator, but it can also be a nearest neighbor estimator if the bandwidth is
adaptive, which is what we do.

In the literature on kernel regression, it is well-known that the specific kernel function chosen is of
less importance than is choosing the bandwidth appropriately, given the chosen kernel (REF). For this
reason, we use a truncated Gaussian kernel, and focus on choosing the bandwidth well. The specific



kernel function we use is

Kh (Zs
n − Zn) =

φ

(
a‖Σ−1/2(Zsn−Zn)‖

h

)
if

∥∥∥Σ−1/2 (Zs
n − Zn)

∥∥∥ ≤ h

0 if
∥∥∥Σ−1/2 (Zs

n − Zn)
∥∥∥ > h

where φ(·) is the multivariate standard normal density function. The matrix Σ is the diagonal matrix
containing the sample variances of the S replications of Zs

n. This matrix plays the important role of
putting the elements of the auxiliary statistic vector on the same scale, so that statistics with larger
variances do not dominate the distance measure. The bandwidth h is adaptive, it is the kth order
statistic of the S distances

ds =
∥∥∥Σ−1/2 (Zs

n − Zn)
∥∥∥ , s = 1, 2, ..., S. (22.11)

Define dks as the kth order statistic of these distances, so the kernel bandwidth is h = dks . Thus, this
adaptive kernel regression estimator is a KNN estimator, where only the closest k neighbors affect the
fit. The scalar tuning parameter a influences how rapidly the weights decline as the distance between
the simulated statistic and the observed statistic increases. We set a = 2. With these choices, the
SBIL estimator is a weighted average of the θs such that the corresponding simulated (scaled) Zs

n is
among the k nearest neighbors to Zn, and the weights are declining as the distance from Zn increases.
The problem of choosing the bandwidth becomes one of choosing the number of neighbors to use.

In the i.i.d. sample context that applies to the simulated pairs (θs, Zs
n), the KNN estimator is con-

sistent for the true posterior mean E(θ|Zn) as S increases, as long as the chosen number of neighbors,
k, grows slowly with S (Li and Racine, 2007, Ch. 14). Because S, the number of simulations can be
made as large as needed, consistency of KNN regression means that the SBIL estimator can be made
arbitrarily close to the infeasible BIL estimator. Nevertheless, methods for choosing k as a function of



S to obtain good performance of the SBIL estimator without requiring the number of simulations to
be extremely large are desirable, to limit the computational demand. Another factor that obviously
affects the performance of the SBIL estimator is the choice of the vector of statistics that form Zn.
These issues have been addressed, but they are beyond the score of these notes.

This discussion makes clear the nature of the estimator. The infeasible BIL estimator is a posterior
mean, conditional on a statistic, rather than the full sample. It turns out that the BIL estimator
is first order asymptotically equivalent to the optimal GMM estimator that uses the same statistic
(CK13). Thus, the relationship between the BIL estimator and the ordinary posterior mean E(θ|Yn)
based on the full sample is essentially the same as the relationship between the GMM estimator
and the maximum likelihood estimator: the first is in general not fully efficient, and the issue of
the choice of statistics arises. The relationship between the SBIL estimator and the infeasible BIL
estimator is like that between an ordinary Bayesian posterior mean computed using Markov chain
Monte Carlo or some other computational technique, and the desired true posterior mean: the first
is a numeric approximation of the second, which can be made as precise as needed by means of
additional computional resources. Our argument for using the SBIL estimator is one of convenience
and performance. In terms of convenience, the SBIL estimator can be reliably computed using simple
means that are very amenable to parallel computing techniques. Regarding performance, we show by
example that Zn can be found which lead to good estimation results, even for complicated models
(e.g., DSGE models) that traditionally have required sophisticated estimation techniques.

A Simple DSGE Model

CK13 shows that SBIL estimation is tractible and gives reliable results for estimating the parameters
of a simple DSGE model. SBIL estimation can be done quickly and easily enough so that it is possible



to show its good performance via Monte Carlo, and example software has been provided that allows
confirmation of these results in little time. Here we use the same model to illustrate the methods
we propose. The model is as follows: A single good can be consumed or used for investment, and a
single competitive firm maximizes profits. The variables are: y output; c consumption; k capital; i
investment, n labor; w real wages; r return to capital. The household maximizes expected discounted
utility

Et

∞∑
s=0

βs
 c1−γ

t+s
1− γ + (1− nt+s)ηtψ


subject to the budget constraint ct+it = rtkt+wtnt and the accumulation of capital kt+1 = it+(1−δkt).
There is a preference shock, ηt, that affects the desirability of leisure. The shock evolves according to
ln ηt = ρη ln ηt−1 +σηεt. The competitive firm produces the good yt using the technology yt = kαt n

1−α
t zt.

Technology shocks zt also follow an AR(1) process in logarithms: ln zt = ρz ln zt−1 + σzut. The
innovations to the preference and technology shocks, εt and ut, are mutually independent i.i.d. standard
normally distributed. The good yt can be allocated by the consumer to consumption or investment:
yt = ct + it. The consumer provides capital and labor to the firm, and is paid at the rates rt and wt,
respectively. The unknown parameters are collected in θ = (α, β, δ, γ, ψ, ρz, ρη, σz, ση). In total, we
have seven variables and two shocks.

In the estimation, we treat capital stock k as unobserved, while the remaing variables are observed.
The true parameter values are given in Table 22.1. Following Ruge-Murcia (2012), rather than set a
true value and prior for ψ and estimate this parameter directly, we instead treat steady state hours
n̄ as a parameter to estimate, along with the other parameters, excepting ψ. Following Ruge-Murcia
(2012), the true value for ψ was found using the other true parameter values, along with the restriction
that true steady state hours n̄ = 1/3. The true value is ψ = c̄−γ (1− α) k̄αn̄−α = 3.417, where overbars



indicate steady state values of the variables.
The solution method is third-order perturbation using Dynare (Adjemian et al., 2011). The pseudo-

prior π(θ) is a uniform distribution over the hypercube defined by the bounds of the parameter space,
which are found in columns 3 and 4 of Table 22.1. The chosen limits cause the pseudo-prior means
to be biased for the true parameter values (see column 5 of the Table), and they are intended to be
broad, in comparison to the fairly strongly informative priors that are often used when estimating
DSGE models (see column 6 of the Table). To generate simulations, a parameter value θs is drawn
from the prior, then the model is solved at this parameter value, and a simulated sample is drawn.
The sample size is n = 80, which mimics 20 years of quarterly data. With a simulated sample, we can
generate a realization of the vector of statistics, Zs

n(θs).
Auxiliary statistics should capture the essential features of the data. In this case, it is natural

to use the parameter estimates of a vector autogressive (VAR) model as an auxiliary statistic. In
this example, I use a Bayesian VAR model of order 1 for the 5 observable variables consumption,
investment, hours, wages and interest rate (the capital stock is taken to be unobservable), subject to
the Minnesota priors that the variables individually follow a random walk process (Doan et al., 1984,
see also Section 15.2). This is done after de-meaning and standardizing the variables. This gives 40
statistics: 25 regression coefficients, and 15 estimated covariance matrix elements. Additional auxiliary
statistics are the sample means and standard deviations of the variables (10 additional statistics), and
certain statistics suggested by consideration of the specific DSGE model. For example, the model
implies that w = ψηcγ, so logw = logψ + γ log c + log η, where log η follows an AR(1) process.
Because w and c are observable, this equation can be estimated. We use a generalized instrumental
variables estimator (GIV), using the lags of the logarithms of the observable variables as instruments.
The GIV estimation results give a statistic γ̂ which is likely to be informative about the parameter



γ. The residuals from the GIV estimation can be used to fit the regression l̂og ηt = ρη ̂log ηt−1 + εt,
which leads to statistics that should be informative for the parameters ρη and ση. In total, the vector
of auxiliary statistics has 57 elements.

Table 22.1 gives the true parameter values and the limits of the uniform priors, along with infor-
mation about the informativeness of the prior. Table 22.2 give results for a Monte Carlo study of
the performance of the SBIL estimator. If you compare RMSE in the two tables, you’ll see that the
SBIL estimator achieves a considerable reduction of RMSE relative to that of the prior. Also, the
SBIL estimator (with bootstrap-based bias correction) is essentially unbiased for all of the model’s
parameters.

A simple script that does SBIL estimation of the same DSGE model as discussed above is at DSGE
by SBIL. This implements a less sophisticated verion of the estimator than was used to make the tables
presented here (less careful choice of auxiliary statistics, no bias correction, etc), but it conveys the
main ideas.

These results show that simulation-based estimation enables estimation of the parameters of a
nonlinear structural model, with good precision.

• The GMM estimation of the portfolio model, in Section 14.15, gave quite unreliable results.
That estimation method used moment conditions derived from the Euler equation, crossed with
instruments chosen by an ad hoc procedure.

• We have also seen, in Section 13.8, that ”maximum likelihood” estimation of such models, after
linearization (which means we’re not really doing ML estimation), is in many cases not very
successful, at least when all parameters are to be estimated.

• There are alternative methods to actually do ML estimation, using particle filtering, which is a

http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Econometrics/IL/DSGE_SBIL_Simple/DSGE_SBIL_Simple.m
http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Econometrics/IL/DSGE_SBIL_Simple/DSGE_SBIL_Simple.m


nonlinear filter, which can replace the Kalman filter when the model is nonlinear. This method
is computationally quite intensive.

• IL estimation is perfectly feasible. It is somewhat computationally intensive, but the fact that
it is possible to investigate its properties by Monte Carlo illustrates that it is not excessively
computationally intensive.

Table 22.1: True parameter values and bound of priors

Prior bounds
Parameter True value Lower Upper Prior Bias Prior RMSE

α 0.330 0.2 0.4 -0.030 0.065
β 0.990 0.97 0.999 -0.006 0.010
δ 0.025 0.005 0.04 0.000 0.009
γ 2.000 0.0 5.0 0.500 1.527
ρz 0.900 0.5 0.999 -0.150 0.208
σz 0.010 0.001 0.1 0.041 0.049
ρη 0.700 0.5 0.999 0.049 0.152
ση 0.005 0.001 0.1 0.046 0.054
n̄ 7/24 8/24 9/24 0.000 0.024



Table 22.2: Monte Carlo results, bias corrected estimators

Mean Bias RMSE
Parameter True value 1st round 2nd round 1st round 2nd round 1st round 2nd round

α 0.330 0.329 0.330 -0.001 -0.000 0.002 0.002
β 0.990 0.990 0.990 0.000 -0.000 0.001 0.001
δ 0.025 0.025 0.025 -0.000 -0.000 0.001 0.001
γ 2.000 2.065 2.027 0.065 0.027 0.290 0.292
ρz 0.900 0.891 0.899 -0.009 -0.001 0.052 0.052
σz 0.010 0.010 0.010 0.000 -0.000 0.002 0.002
ρη 0.700 0.707 0.701 0.007 0.001 0.071 0.076
ση 0.005 0.005 0.005 0.000 -0.000 0.001 0.002
n̄ 1/3 0.333 0.333 -0.000 -0.000 0.004 0.004

A jump-diffusion model

Another example of IL estimation is the jump-diffusion model that was introduced in section 15.4.
To estimate the model, we need an auxiliary statistic that is informative about the parameters of the
model. The stylized facts are:

• contemporaneous correlation between returns and volatility (leverage)

• volatility clusters: serial correlation of volatility

• fat tails

• slight autocorrelation of returns



We need statistics that can pick up all of this. Ideally, the statistics should be reasonably fast and
easy to compute. This suggests using

• an EGARCH-type model for returns. Can capture all 4 stylized facts. Requires iterative maxi-
mization, but is stable and reliable.

• HAR-J type models where high frequency realized volatility measures are explained with their
own lags, and with measures of jump activity that rely on jump-robust measures of volatility.
This picks up volatility clusters, and the effect of jumps, which can generate fat tails. Estimation
is by OLS.

• an autoregressive model for returns. This picks up a slight autocorrelation below the level that
would trigger arbitrage. It can also pick up the effect of measurement error in returns. If this
exists, then returns would contain an MA(1) error, which would also leads to a small correlation
in returns. OLS

• ordinary descriptive statistics for returns and realized volatility measures.

IL estimation was done for

22.6 Examples

SML of a Poisson model with latent heterogeneity

We have seen (see equation ??) that a Poisson model with latent heterogeneity that follows an ex-
ponential distribution leads to the negative binomial model. To illustrate SML, we can integrate out



the latent heterogeneity using Monte Carlo, rather than the analytical approach which leads to the
negative binomial model. In actual practice, one would not want to use SML in this case, but it is
a nice example since it allows us to compare SML to the actual ML estimator. The Octave func-
tion defined by PoissonLatentHet.m calculates the simulated log likelihood for a Poisson model where
λ = expx′tβ + ση), where η ∼ N(0, 1). This model is similar to the negative binomial model, except
that the latent variable is normally distributed rather than gamma distributed. The Octave script
EstimatePoissonLatentHet.m estimates this model using the MEPS OBDV data that has already been
discussed. Note that simulated annealing is used to maximize the log likelihood function. Attempting
to use BFGS leads to trouble. I suspect that the log likelihood is approximately non-differentiable in
places, around which it is very flat, though I have not checked if this is true. If you run this script,
you will see that it takes a long time to get the estimation results, which are:

******************************************************
Poisson Latent Heterogeneity model, SML estimation, MEPS 1996 full data set

MLE Estimation Results
BFGS convergence: Max. iters. exceeded

Average Log-L: -2.171826
Observations: 4564

estimate st. err t-stat p-value
constant -1.592 0.146 -10.892 0.000
pub. ins. 1.189 0.068 17.425 0.000

http://pareto.uab.es/mcreel/Econometrics/Examples/SBEM/PoissonLatentHet.m
http://pareto.uab.es/mcreel/Econometrics/Examples/SBEM/EstimatePoissonLatentHet.m


priv. ins. 0.655 0.065 10.124 0.000
sex 0.615 0.044 13.888 0.000
age 0.018 0.002 10.865 0.000
edu 0.024 0.010 2.523 0.012
inc -0.000 0.000 -0.531 0.596
lnalpha 0.203 0.014 14.036 0.000

Information Criteria
CAIC : 19899.8396 Avg. CAIC: 4.3602
BIC : 19891.8396 Avg. BIC: 4.3584
AIC : 19840.4320 Avg. AIC: 4.3472
******************************************************
octave:3>

If you compare these results to the results for the negative binomial model, given in subsection (18.2),
you can see that the present model fits better according to the CAIC criterion. The present model
is considerably less convenient to work with, however, due to the computational requirements. The
chapter on parallel computing is relevant if you wish to use models of this sort.

MSM

An example of estimation using the MSM is given in the script file MSM_Example.m. The first order
moving average (MA(1)) model has been widely used to investigate the performance of the indirect

http://pareto.uab.es/mcreel/Econometrics/Examples/SBEM/MSM_Example.m


inference estimator, and a pth-order autoregressive model is often used to generate the auxiliary
statistic (see, for example, Gouriéroux, Monfort and Renault, 1993; Chumacero, 2001). In this section
we estimate the MA(1) model

yt = εt + ψεt−1

εt ∼ i.i.d.N(0, σ2)

The parameter vector is θ = (ψ, σ). We set the parameter space for the initial simulated annealing
stage (to get good start values for the gradient-based algorithm) to Θ = (−1, 1) × (0, 2), which
imposes invertibility, which is needed for the parameter to be identified. The statistic Zn is the vector
of estimated parameters (ρ0, ρ1, ..., ρP , σ

2
υ) of an AR(P ) model yt = ρ0 + ∑P

p=1 ρpyt−p + υt, fit to the
data using ordinary least squares.

We estimate θ using MSM implemented as II, using continuously updated GMM (Hanson, Heaton
and Yaron, 1996). The moment conditions that define the continuously updated indirect inference
(CU-II) estimator are mn(θ) = Zn − Z̄S,n(θ) where Z̄S,n(θ) = 1

S

∑S
s=1 Z

s
n(θ), and the weight matrix at

each iteration is the inverse of ΩS
n(θ) = 1

S

∑S
s=1

[
Zs
n (θ)− Z̄S,n(θ)

] [
Zs
n (θ)− Z̄S,n(θ)

]′, where S = 100.

Example: EMM estimation of a discrete choice model

In this section consider EMM estimation. There is a sophisticated package by Gallant and Tauchen for
this, but here we’ll look at some simple, but hopefully didactic code. The file probitdgp.m generates
data that follows the probit model. The file emm_moments.m defines EMM moment conditions,
where the DGP and score generator can be passed as arguments. Thus, it is a general purpose
moment condition for EMM estimation. This file is interesting enough to warrant some discussion.

http://www.econ.duke.edu/~get/emm.html
http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/ProbitDGP.m
http://pareto.uab.es/mcreel/Econometrics/Examples/Parallel/gmm/emm_moments.m


A listing appears in Listing 19.1. Line 3 defines the DGP, and the arguments needed to evaluate it
are defined in line 4. The score generator is defined in line 5, and its arguments are defined in line 6.
The QML estimate of the parameter of the score generator is read in line 7. Note in line 10 how the
random draws needed to simulate data are passed with the data, and are thus fixed during estimation,
to avoid ”chattering”. The simulated data is generated in line 16, and the derivative of the score
generator using the simulated data is calculated in line 18. In line 20 we average the scores of the
score generator, which are the moment conditions that the function returns.

1 function scores = emm_moments(theta, data, momentargs)
2 k = momentargs{1};
3 dgp = momentargs{2}; # the data generating process (DGP)
4 dgpargs = momentargs{3}; # its arguments (cell array)
5 sg = momentargs{4}; # the score generator (SG)
6 sgargs = momentargs{5}; # SG arguments (cell array)
7 phi = momentargs{6}; # QML estimate of SG parameter
8 y = data(:,1);
9 x = data(:,2:k+1);

10 rand_draws = data(:,k+2:columns(data)); # passed with data to ensure fixed across iterations
11 n = rows(y);
12 scores = zeros(n,rows(phi)); # container for moment contributions
13 reps = columns(rand_draws); # how many simulations?
14 for i = 1:reps
15 e = rand_draws(:,i);
16 y = feval(dgp, theta, x, e, dgpargs); # simulated data
17 sgdata = [y x]; # simulated data for SG
18 scores = scores + numgradient(sg, {phi, sgdata, sgargs}); # gradient of SG
19 endfor
20 scores = scores / reps; # average over number of simulations



21 endfunction

Listing 22.1: emm_moments.m

The file emm_example.m performs EMM estimation of the probit model, using a logit model as
the score generator. The results we obtain are

Score generator results:
=====================================================
BFGSMIN final results

Used analytic gradient

------------------------------------------------------
STRONG CONVERGENCE
Function conv 1 Param conv 1 Gradient conv 1
------------------------------------------------------
Objective function value 0.281571
Stepsize 0.0279
15 iterations
------------------------------------------------------

param gradient change
1.8979 0.0000 0.0000
1.6648 -0.0000 0.0000
1.9125 -0.0000 0.0000
1.8875 -0.0000 0.0000
1.7433 -0.0000 0.0000

http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/ParallelKnoppix/gmm/emm_example.m


======================================================

Model results:
******************************************************
EMM example

GMM Estimation Results
BFGS convergence: Normal convergence

Objective function value: 0.000000
Observations: 1000

Exactly identified, no spec. test

estimate st. err t-stat p-value
p1 1.069 0.022 47.618 0.000
p2 0.935 0.022 42.240 0.000
p3 1.085 0.022 49.630 0.000
p4 1.080 0.022 49.047 0.000
p5 0.978 0.023 41.643 0.000
******************************************************

It might be interesting to compare the standard errors with those obtained from ML estimation,
to check efficiency of the EMM estimator. One could even do a Monte Carlo study.



Indirect likelihood inference

A simple script that does SBIL estimation of the same DSGE model as discussed above is at DSGE by
SBIL. This implements a less sophisticated verion of the estimator than was used to make the tables
presented here (less careful choice of auxiliary statistics, no bias correction, etc), but it conveys the
main ideas.

http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Econometrics/IL/DSGE_SBIL_Simple/DSGE_SBIL_Simple.m
http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Econometrics/IL/DSGE_SBIL_Simple/DSGE_SBIL_Simple.m


22.7 Exercises

1. (basic) Examine the Octave script and function discussed in subsection 22.6 and describe what
they do.

2. (basic) Examine the Octave scripts and functions discussed in subsection 22.6 and describe what
they do.

3. (advanced, but even if you don’t do this you should be able to describe what needs to be done)
Write Octave code to do SML estimation of the probit model. Do an estimation using data
generated by a probit model ( probitdgp.m might be helpful). Compare the SML estimates to
ML estimates.

4. (more advanced) Do a little Monte Carlo study to compare ML, SML and EMM estimation of
the probit model. Investigate how the number of simulations affect the two simulation-based
estimators.

http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/ProbitDGP.m


Chapter 23

Parallel programming for
econometrics

The following borrows heavily from Creel (2005).
Parallel computing can offer an important reduction in the time to complete computations. This

is well-known, but it bears emphasis since it is the main reason that parallel computing may be
attractive to users. To illustrate, the Intel Pentium IV (Willamette) processor, running at 1.5GHz,
was introduced in November of 2000. The Pentium IV (Northwood-HT) processor, running at 3.06GHz,
was introduced in November of 2002. An approximate doubling of the performance of a commodity
CPU took place in two years. Extrapolating this admittedly rough snapshot of the evolution of the
performance of commodity processors, one would need to wait more than 6.6 years and then purchase
a new computer to obtain a 10-fold improvement in computational performance. The examples in
this chapter show that a 10-fold improvement in performance can be achieved immediately, using
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distributed parallel computing on available computers.
Recent (this is written in 2005) developments that may make parallel computing attractive to a

broader spectrum of researchers who do computations. The first is the fact that setting up a cluster
of computers for distributed parallel computing is not difficult. If you are using the ParallelKnoppix
bootable CD that accompanies these notes, you are less than 10 minutes away from creating a cluster,
supposing you have a second computer at hand and a crossover ethernet cable. See the ParallelKnop-
pix tutorial. A second development is the existence of extensions to some of the high-level matrix
programming (HLMP) languages1 that allow the incorporation of parallelism into programs written
in these languages. A third is the spread of dual and quad-core CPUs, so that an ordinary desktop
or laptop computer can be made into a mini-cluster. Those cores won’t work together on a single
problem unless they are told how to.

Following are examples of parallel implementations of several mainstream problems in econometrics.
A focus of the examples is on the possibility of hiding parallelization from end users of programs. If
programs that run in parallel have an interface that is nearly identical to the interface of equivalent
serial versions, end users will find it easy to take advantage of parallel computing’s performance. We
continue to use Octave, taking advantage of the MPI Toolbox (MPITB) for Octave, by by Fernández
Baldomero et al. (2004). There are also parallel packages for Ox, R, and Python which may be
of interest to econometricians, but as of this writing, the following examples are the most accessible
introduction to parallel programming for econometricians.

1By ”high-level matrix programming language” I mean languages such as MATLAB (TM the Mathworks, Inc.), Ox (TM OxMetrics Tech-
nologies, Ltd.), and GNU Octave (www.octave.org), for example.

http://pareto.uab.es/mcreel/ParallelKnoppix
http://pareto.uab.es/mcreel/ParallelKnoppix/ParallelKnoppixTutorial.html
http://pareto.uab.es/mcreel/ParallelKnoppix/ParallelKnoppixTutorial.html
http://atc.ugr.es/javier-bin/mpitb
www.octave.org


23.1 Example problems

This section introduces example problems from econometrics, and shows how they can be parallelized
in a natural way.

Monte Carlo

A Monte Carlo study involves repeating a random experiment many times under identical condi-
tions. Several authors have noted that Monte Carlo studies are obvious candidates for parallelization
(Doornik et al. 2002; Bruche, 2003) since blocks of replications can be done independently on different
computers. To illustrate the parallelization of a Monte Carlo study, we use same trace test example
as do Doornik, et. al. (2002). tracetest.m is a function that calculates the trace test statistic for the
lack of cointegration of integrated time series. This function is illustrative of the format that we adopt
for Monte Carlo simulation of a function: it receives a single argument of cell type, and it returns a
row vector that holds the results of one random simulation. The single argument in this case is a cell
array that holds the length of the series in its first position, and the number of series in the second
position. It generates a random result though a process that is internal to the function, and it reports
some output in a row vector (in this case the result is a scalar).

mc_example1.m is an Octave script that executes a Monte Carlo study of the trace test by repeat-
edly evaluating the tracetest.m function. The main thing to notice about this script is that lines 7
and 10 call the function montecarlo.m. When called with 3 arguments, as in line 7, montecarlo.m
executes serially on the computer it is called from. In line 10, there is a fourth argument. When called
with four arguments, the last argument is the number of slave hosts to use. We see that running the
Monte Carlo study on one or more processors is transparent to the user - he or she must only indicate

http://pareto.uab.es/mcreel/Econometrics/Examples/Parallel/montecarlo/tracetest.m
http://pareto.uab.es/mcreel/Econometrics/Examples/Parallel/montecarlo/mc_example1.m


the number of slave computers to be used.

ML

For a sample {(yt, xt)}n of n observations of a set of dependent and explanatory variables, the maximum
likelihood estimator of the parameter θ can be defined as

θ̂ = arg max sn(θ)

where
sn(θ) = 1

n

n∑
t=1

ln f(yt|xt, θ)

Here, yt may be a vector of random variables, and the model may be dynamic since xt may contain
lags of yt. As Swann (2002) points out, this can be broken into sums over blocks of observations, for
example two blocks:

sn(θ) = 1
n


 n1∑
t=1

ln f(yt|xt, θ)
 +

 n∑
t=n1+1

ln f(yt|xt, θ)


Analogously, we can define up to n blocks. Again following Swann, parallelization can be done by
calculating each block on separate computers.

mle_example1.m is an Octave script that calculates the maximum likelihood estimator of the
parameter vector of a model that assumes that the dependent variable is distributed as a Poisson
random variable, conditional on some explanatory variables. In lines 1-3 the data is read, the name
of the density function is provided in the variable model, and the initial value of the parameter vector
is set. In line 5, the function mle_estimate performs ordinary serial calculation of the ML estimator,

http://pareto.uab.es/mcreel/Econometrics/Examples/Parallel/mle/mle_example1.m


while in line 7 the same function is called with 6 arguments. The fourth and fifth arguments are empty
placeholders where options to mle_estimate may be set, while the sixth argument is the number of
slave computers to use for parallel execution, 1 in this case. A person who runs the program sees
no parallel programming code - the parallelization is transparent to the end user, beyond having to
select the number of slave computers. When executed, this script prints out the estimates theta_s
and theta_p, which are identical.

It is worth noting that a different likelihood function may be used by making the model variable
point to a different function. The likelihood function itself is an ordinary Octave function that is not
parallelized. The mle_estimate function is a generic function that can call any likelihood function
that has the appropriate input/output syntax for evaluation either serially or in parallel. Users need
only learn how to write the likelihood function using the Octave language.

GMM

For a sample as above, the GMM estimator of the parameter θ can be defined as

θ̂ ≡ arg min
Θ
sn(θ)

where
sn(θ) = mn(θ)′Wnmn(θ)

and
mn(θ) = 1

n

n∑
t=1

mt(yt|xt, θ)



Since mn(θ) is an average, it can obviously be computed blockwise, using for example 2 blocks:

mn(θ) = 1
n


 n1∑
t=1

mt(yt|xt, θ)
 +

 n∑
t=n1+1

mt(yt|xt, θ)
 (23.1)

Likewise, we may define up to n blocks, each of which could potentially be computed on a different
machine.

gmm_example1.m is a script that illustrates how GMM estimation may be done serially or in
parallel. When this is run, theta_s and theta_p are identical up to the tolerance for convergence of
the minimization routine. The point to notice here is that an end user can perform the estimation in
parallel in virtually the same way as it is done serially. Again, gmm_estimate, used in lines 8 and 10,
is a generic function that will estimate any model specified by the moments variable - a different model
can be estimated by changing the value of the moments variable. The function that moments points
to is an ordinary Octave function that uses no parallel programming, so users can write their models
using the simple and intuitive HLMP syntax of Octave. Whether estimation is done in parallel or
serially depends only the seventh argument to gmm_estimate - when it is missing or zero, estimation
is by default done serially with one processor. When it is positive, it specifies the number of slave
nodes to use.

http://pareto.uab.es/mcreel/Econometrics/Examples/Parallel/gmm/gmm_example1.m


Kernel regression

The Nadaraya-Watson kernel regression estimator of a function g(x) at a point x is

ĝ(x) =
∑n
t=1 ytK [(x− xt) /γn]∑n
t=1K [(x− xt) /γn]

≡
n∑
t=1

wtyy

We see that the weight depends upon every data point in the sample. To calculate the fit at every
point in a sample of size n, on the order of n2k calculations must be done, where k is the dimension
of the vector of explanatory variables, x. Racine (2002) demonstrates that MPI parallelization can
be used to speed up calculation of the kernel regression estimator by calculating the fits for portions
of the sample on different computers. We follow this implementation here. kernel_example1.m is a
script for serial and parallel kernel regression. Serial execution is obtained by setting the number of
slaves equal to zero, in line 15. In line 17, a single slave is specified, so execution is in parallel on the
master and slave nodes.

The example programs show that parallelization may be mostly hidden from end users. Users can
benefit from parallelization without having to write or understand parallel code. The speedups one
can obtain are highly dependent upon the specific problem at hand, as well as the size of the cluster,
the efficiency of the network, etc. Some examples of speedups are presented in Creel (2005). Figure
23.1 reproduces speedups for some econometric problems on a cluster of 12 desktop computers. The
speedup for k nodes is the time to finish the problem on a single node divided by the time to finish the
problem on k nodes. Note that you can get 10X speedups, as claimed in the introduction. It’s pretty
obvious that much greater speedups could be obtained using a larger cluster, for the ”embarrassingly

http://pareto.uab.es/mcreel/Econometrics/Examples/Parallel/kernel/kernel_example1.m


Figure 23.1: Speedups from parallelization
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Chapter 24

Introduction to Octave

Why is Octave being used here, since it’s not that well-known by econometricians? Well, because it is
a high quality environment that is easily extensible, uses well-tested and high performance numerical
libraries, it is licensed under the GNU GPL, so you can get it for free and modify it if you like, and it
runs on both GNU/Linux, Mac OSX and Windows systems. It’s also quite easy to learn.

24.1 Getting started

Get the ParallelKnoppix CD, as was described in Section 1.5. Then burn the image, and boot your
computer with it. This will give you this same PDF file, but with all of the example programs ready
to run. The editor is configure with a macro to execute the programs using Octave, which is of course
installed. From this point, I assume you are running the CD (or sitting in the computer room across
the hall from my office), or that you have configured your computer to be able to run the *.m files
mentioned below.
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24.2 A short introduction

The objective of this introduction is to learn just the basics of Octave. There are other ways to use
Octave, which I encourage you to explore. These are just some rudiments. After this, you can look
at the example programs scattered throughout the document (and edit them, and run them) to learn
more about how Octave can be used to do econometrics. Students of mine: your problem sets will
include exercises that can be done by modifying the example programs in relatively minor ways. So
study the examples!

Octave can be used interactively, or it can be used to run programs that are written using a text
editor. We’ll use this second method, preparing programs with NEdit, and calling Octave from within
the editor. The program first.m gets us started. To run this, open it up with NEdit (by finding the
correct file inside the /home/knoppix/Desktop/Econometrics folder and clicking on the icon) and
then type CTRL-ALT-o, or use the Octave item in the Shell menu (see Figure 24.1).

Note that the output is not formatted in a pleasing way. That’s because printf() doesn’t auto-
matically start a new line. Edit first.m so that the 8th line reads ”printf(”hello world\n”);”
and re-run the program.

We need to know how to load and save data. The program second.m shows how. Once you have
run this, you will find the file ”x” in the directory Econometrics/Examples/OctaveIntro/ You might
have a look at it with NEdit to see Octave’s default format for saving data. Basically, if you have data
in an ASCII text file, named for example ”myfile.data”, formed of numbers separated by spaces,
just use the command ”load myfile.data”. After having done so, the matrix ”myfile” (without
extension) will contain the data.

Please have a look at CommonOperations.m for examples of how to do some basic things in Octave.
Now that we’re done with the basics, have a look at the Octave programs that are included as examples.

http://pareto.uab.es/mcreel/Econometrics/Examples/OctaveIntro/first.m
http://pareto.uab.es/mcreel/Econometrics/Examples/OctaveIntro/second.m
http://pareto.uab.es/mcreel/Econometrics/Examples/OctaveIntro/CommonOperations.m


Figure 24.1: Running an Octave program



If you are looking at the browsable PDF version of this document, then you should be able to click on
links to open them. If not, the example programs are available here and the support files needed to
run these are available here. Those pages will allow you to examine individual files, out of context. To
actually use these files (edit and run them), you should go to the home page of this document, since
you will probably want to download the pdf version together with all the support files and examples.
Or get the bootable CD.

There are some other resources for doing econometrics with Octave. You might like to check the
article Econometrics with Octave and the Econometrics Toolbox , which is for Matlab, but much of
which could be easily used with Octave.

24.3 If you’re running a Linux installation...

Then to get the same behavior as found on the CD, you need to:

• Get the collection of support programs and the examples, from the document home page.

• Put them somewhere, and tell Octave how to find them, e.g., by putting a link to the MyOc-
taveFiles directory in /usr/local/share/octave/site-m

• Make sure nedit is installed and configured to run Octave and use syntax highlighting. Copy the
file /home/econometrics/.nedit from the CD to do this. Or, get the file NeditConfiguration
and save it in your $HOME directory with the name ”.nedit”. Not to put too fine a point on
it, please note that there is a period in that name.

• Associate *.m files with NEdit so that they open up in the editor when you click on them. That
should do it.

http://pareto.uab.es/mcreel/Econometrics/Examples/EconometricsOctaveFiles.html
http://pareto.uab.es/mcreel/Econometrics/Examples/SupportOctaveFiles.html
http://pareto.uab.es/mcreel/Econometrics
http://ideas.repec.org/a/jae/japmet/v15y2000i5p531-542.html
http://www.spatial-econometrics.com/
http://pareto.uab.es/mcreel/Econometrics/Examples/
http://pareto.uab.es/mcreel/NeditConfiguration


Chapter 25

Notation and Review

• All vectors will be column vectors, unless they have a transpose symbol (or I forget to apply this
rule - your help catching typos and er0rors is much appreciated). For example, if xt is a p × 1
vector, x′t is a 1× p vector. When I refer to a p-vector, I mean a column vector.

25.1 Notation for differentiation of vectors and matrices

[3, Chapter 1]
Let s(·) : <p → < be a real valued function of the p-vector θ. Then ∂s(θ)

∂θ is organized as a p-vector,

∂s(θ)
∂θ

=



∂s(θ)
∂θ1
∂s(θ)
∂θ2...
∂s(θ)
∂θp
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Following this convention,∂s(θ)∂θ′ is a 1× p vector, and ∂2s(θ)
∂θ∂θ′ is a p× p matrix. Also,

∂2s(θ)
∂θ∂θ′

= ∂

∂θ

∂s(θ)
∂θ′

 = ∂

∂θ′

∂s(θ)
∂θ

 .
Exercise 70. For a and x both p-vectors, show that ∂a′x

∂x = a.

Let f(θ):<p → <n be a n-vector valued function of the p-vector θ. Let f(θ)′ be the 1 × n valued
transpose of f . Then

(
∂
∂θf(θ)′

)′ = ∂
∂θ′f(θ).

Definition. Product rule. Let f(θ):<p → <n and h(θ):<p → <n be n-vector valued functions of the
p-vector θ. Then

∂

∂θ′
h(θ)′f(θ) = h′

(
∂

∂θ′
f

)
+ f ′

(
∂

∂θ′
h

)

has dimension 1× p. Applying the transposition rule we get

∂

∂θ
h(θ)′f(θ) =

(
∂

∂θ
f ′
)
h+

(
∂

∂θ
h′
)
f

which has dimension p× 1.

Exercise 71. For A a p× p matrix and x a p× 1 vector, show that ∂x′Ax
∂x = A+ A′.

Definition 72. Chain rule. Let f(·):<p → <n a n-vector valued function of a p-vector argument, and
let g():<r → <p be a p-vector valued function of an r-vector valued argument ρ. Then

∂

∂ρ′
f [g (ρ)] = ∂

∂θ′
f(θ)

∣∣∣∣∣
θ=g(ρ)

∂

∂ρ′
g(ρ)



has dimension n× r.

Exercise 73. For x and β both p× 1 vectors, show that ∂ exp(x′β)
∂β = exp(x′β)x.

25.2 Convergenge modes

Readings: [1, Chapter 4];[4, Chapter 4].
We will consider several modes of convergence. The first three modes discussed are simply for

background. The stochastic modes are those which will be used later in the course.

Definition 74. A sequence is a mapping from the natural numbers {1, 2, ...} = {n}∞n=1 = {n} to some
other set, so that the set is ordered according to the natural numbers associated with its elements.

Real-valued sequences:

Definition 75. [Convergence] A real-valued sequence of vectors {an} converges to the vector a if for
any ε > 0 there exists an integer Nε such that for all n > Nε, ‖ an − a ‖< ε . a is the limit of an,
written an → a.

Deterministic real-valued functions

Consider a sequence of functions {fn(ω)} where

fn : Ω→ T ⊆ <.

Ω may be an arbitrary set.



Definition 76. [Pointwise convergence] A sequence of functions {fn(ω)} converges pointwise on Ω to
the function f(ω) if for all ε > 0 and ω ∈ Ω there exists an integer Nεω such that

|fn(ω)− f(ω)| < ε,∀n > Nεω.

It’s important to note that Nεω depends upon ω, so that converge may be much more rapid for
certain ω than for others. Uniform convergence requires a similar rate of convergence throughout Ω.

Definition 77. [Uniform convergence] A sequence of functions {fn(ω)} converges uniformly on Ω to
the function f(ω) if for any ε > 0 there exists an integer N such that

sup
ω∈Ω
|fn(ω)− f(ω)| < ε,∀n > N.

(insert a diagram here showing the envelope around f(ω) in which fn(ω) must lie).

Stochastic sequences

In econometrics, we typically deal with stochastic sequences. Given a probability space (Ω,F , P ) ,
recall that a random variable maps the sample space to the real line, i.e., X(ω) : Ω→ <. A sequence
of random variables {Xn(ω)} is a collection of such mappings, i.e., each Xn(ω) is a random variable
with respect to the probability space (Ω,F , P ) . For example, given the model Y = Xβ0 + ε, the OLS
estimator β̂n = (X ′X)−1X ′Y, where n is the sample size, can be used to form a sequence of random
vectors {β̂n}. A number of modes of convergence are in use when dealing with sequences of random
variables. Several such modes of convergence should already be familiar:

Definition 78. [Convergence in probability] Let Xn(ω) be a sequence of random variables, and let



X(ω) be a random variable. Let An = {ω : |Xn(ω) − X(ω)| > ε}. Then {Xn(ω)} converges in
probability to X(ω) if

lim
n→∞P (An) = 0,∀ε > 0.

Convergence in probability is written as Xn
p→ X, or plim Xn = X.

Definition 79. [Almost sure convergence] Let Xn(ω) be a sequence of random variables, and let X(ω)
be a random variable. Let A = {ω : limn→∞Xn(ω) = X(ω)}. Then {Xn(ω)} converges almost surely
to X(ω) if

P (A) = 1.

In other words, Xn(ω)→ X(ω) (ordinary convergence of the two functions) except on a set C = Ω−A
such that P (C) = 0. Almost sure convergence is written as Xn

a.s.→ X, or Xn → X, a.s. One can show
that

Xn
a.s.→ X ⇒ Xn

p→ X.

Definition 80. [Convergence in distribution] Let the r.v. Xn have distribution function Fn and the
r.v. Xn have distribution function F. If Fn → F at every continuity point of F, then Xn converges in
distribution to X.

Convergence in distribution is written as Xn
d→ X. It can be shown that convergence in probability

implies convergence in distribution.



Stochastic functions

Simple laws of large numbers (LLN’s) allow us to directly conclude that β̂n a.s.→ β0 in the OLS example,
since

β̂n = β0 +
X ′X

n

−1 X ′ε
n

 ,
and X ′ε

n

a.s.
→ 0 by a SLLN. Note that this term is not a function of the parameter β. This easy proof is

a result of the linearity of the model, which allows us to express the estimator in a way that separates
parameters from random functions. In general, this is not possible. We often deal with the more
complicated situation where the stochastic sequence depends on parameters in a manner that is not
reducible to a simple sequence of random variables. In this case, we have a sequence of random
functions that depend on θ: {Xn(ω, θ)}, where each Xn(ω, θ) is a random variable with respect to a
probability space (Ω,F , P ) and the parameter θ belongs to a parameter space θ ∈ Θ.

Definition 81. [Uniform almost sure convergence] {Xn(ω, θ)} converges uniformly almost surely in Θ
to X(ω, θ) if

lim
n→∞ sup

θ∈Θ
|Xn(ω, θ)−X(ω, θ)| = 0, (a.s.)

Implicit is the assumption that all Xn(ω, θ) and X(ω, θ) are random variables w.r.t. (Ω,F , P )
for all θ ∈ Θ. We’ll indicate uniform almost sure convergence by u.a.s.→ and uniform convergence in
probability by u.p.→ .

• An equivalent definition, based on the fact that “almost sure” means “with probability one” is

Pr
(

lim
n→∞ sup

θ∈Θ
|Xn(ω, θ)−X(ω, θ)| = 0

)
= 1



This has a form similar to that of the definition of a.s. convergence - the essential difference is
the addition of the sup.

25.3 Rates of convergence and asymptotic equality

It’s often useful to have notation for the relative magnitudes of quantities. Quantities that are small
relative to others can often be ignored, which simplifies analysis.

Definition 82. [Little-o] Let f(n) and g(n) be two real-valued functions. The notation f(n) = o(g(n))
means limn→∞

f(n)
g(n) = 0.

Definition 83. [Big-O] Let f(n) and g(n) be two real-valued functions. The notation f(n) = O(g(n))
means there exists some N such that for n > N,

∣∣∣∣f(n)
g(n)

∣∣∣∣ < K, where K is a finite constant.

This definition doesn’t require that f(n)
g(n) have a limit (it may fluctuate boundedly).

If {fn} and {gn} are sequences of random variables analogous definitions are

Definition 84. The notation f(n) = op(g(n)) means f(n)
g(n)

p→ 0.

Example 85. The least squares estimator θ̂ = (X ′X)−1X ′Y = (X ′X)−1X ′ (Xθ0 + ε) = θ0+(X ′X)−1X ′ε.

Since plim (X ′X)−1X ′ε
1 = 0, we can write (X ′X)−1X ′ε = op(1) and θ̂ = θ0 + op(1). Asymptotically, the

term op(1) is negligible. This is just a way of indicating that the LS estimator is consistent.



Definition 86. The notation f(n) = Op(g(n)) means there exists some Nε such that for ε > 0 and all
n > Nε,

P

∣∣∣∣∣∣f(n)
g(n)

∣∣∣∣∣∣ < Kε

 > 1− ε,

where Kε is a finite constant.

Example 87. If Xn ∼ N(0, 1) then Xn = Op(1), since, given ε, there is always some Kε such that
P (|Xn| < Kε) > 1− ε.

Useful rules:

• Op(np)Op(nq) = Op(np+q)

• op(np)op(nq) = op(np+q)

Example 88. Consider a random sample of iid r.v.’s with mean 0 and variance σ2. The estimator of the
mean θ̂ = 1/n∑n

i=1 xi is asymptotically normally distributed, e.g., n1/2θ̂
A∼ N(0, σ2). So n1/2θ̂ = Op(1),

so θ̂ = Op(n−1/2). Before we had θ̂ = op(1), now we have have the stronger result that relates the rate
of convergence to the sample size.

Example 89. Now consider a random sample of iid r.v.’s with mean µ and variance σ2. The estimator
of the mean θ̂ = 1/n∑n

i=1 xi is asymptotically normally distributed, e.g., n1/2
(
θ̂ − µ

)
A∼ N(0, σ2). So

n1/2
(
θ̂ − µ

)
= Op(1), so θ̂ − µ = Op(n−1/2), so θ̂ = Op(1).

These two examples show that averages of centered (mean zero) quantities typically have plim 0,
while averages of uncentered quantities have finite nonzero plims. Note that the definition of Op does
not mean that f(n) and g(n) are of the same order. Asymptotic equality ensures that this is the case.



Definition 90. Two sequences of random variables {fn} and {gn} are asymptotically equal (written
fn

a= gn) if

plim

f(n)
g(n)

 = 1

Finally, analogous almost sure versions of op and Op are defined in the obvious way.



For a and x both p× 1 vectors, show that Dxa
′x = a.

For A a p× p matrix and x a p× 1 vector, show that D2
xx
′Ax = A+ A′.

For x and β both p× 1 vectors, show that Dβ expx′β = exp(x′β)x.
For x and β both p× 1 vectors, find the analytic expression for D2

β expx′β.
Write an Octave program that verifies each of the previous results by taking numeric derivatives.

For a hint, type help numgradient and help numhessian inside octave.



Chapter 26

Licenses

This document and the associated examples and materials are copyright Michael Creel, under the
terms of the GNU General Public License, ver. 2., or at your option, under the Creative Commons
Attribution-Share Alike License, Version 2.5. The licenses follow.

26.1 The GPL

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
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Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you



distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors’ reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any



patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not



covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices



stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If



identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:



a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include



anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.



5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this



License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.



This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions



either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,



REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.



To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA



Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than ‘show w’ and ‘show c’; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.



<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General
Public License instead of this License.

26.2 Creative Commons

Legal Code
Attribution-ShareAlike 2.5
CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE

LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN ATTORNEY-
CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS INFORMATION ON AN
"AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES REGARDING THE INFOR-
MATION PROVIDED, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM ITS
USE.

License
THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CRE-

ATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED
BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER



THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.
BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND

AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS YOU
THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH
TERMS AND CONDITIONS.

1. Definitions
1. "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which

the Work in its entirety in unmodified form, along with a number of other contributions, constituting
separate and independent works in themselves, are assembled into a collective whole. A work that
constitutes a Collective Work will not be considered a Derivative Work (as defined below) for the
purposes of this License.

2. "Derivative Work" means a work based upon the Work or upon the Work and other pre-existing
works, such as a translation, musical arrangement, dramatization, fictionalization, motion picture
version, sound recording, art reproduction, abridgment, condensation, or any other form in which the
Work may be recast, transformed, or adapted, except that a work that constitutes a Collective Work
will not be considered a Derivative Work for the purpose of this License. For the avoidance of doubt,
where the Work is a musical composition or sound recording, the synchronization of the Work in
timed-relation with a moving image ("synching") will be considered a Derivative Work for the purpose
of this License.

3. "Licensor" means the individual or entity that offers the Work under the terms of this License.
4. "Original Author" means the individual or entity who created the Work.
5. "Work" means the copyrightable work of authorship offered under the terms of this License.
6. "You" means an individual or entity exercising rights under this License who has not previously



violated the terms of this License with respect to the Work, or who has received express permission
from the Licensor to exercise rights under this License despite a previous violation.

7. "License Elements" means the following high-level license attributes as selected by Licensor and
indicated in the title of this License: Attribution, ShareAlike.

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict any rights
arising from fair use, first sale or other limitations on the exclusive rights of the copyright owner under
copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants
You a worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright)
license to exercise the rights in the Work as stated below:

1. to reproduce the Work, to incorporate the Work into one or more Collective Works, and to
reproduce the Work as incorporated in the Collective Works;

2. to create and reproduce Derivative Works;
3. to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly

by means of a digital audio transmission the Work including as incorporated in Collective Works;
4. to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly

by means of a digital audio transmission Derivative Works.
5.
For the avoidance of doubt, where the work is a musical composition:
1. Performance Royalties Under Blanket Licenses. Licensor waives the exclusive right to collect,

whether individually or via a performance rights society (e.g. ASCAP, BMI, SESAC), royalties for the
public performance or public digital performance (e.g. webcast) of the Work.

2. Mechanical Rights and Statutory Royalties. Licensor waives the exclusive right to collect,



whether individually or via a music rights society or designated agent (e.g. Harry Fox Agency),
royalties for any phonorecord You create from the Work ("cover version") and distribute, subject to
the compulsory license created by 17 USC Section 115 of the US Copyright Act (or the equivalent in
other jurisdictions).

6. Webcasting Rights and Statutory Royalties. For the avoidance of doubt, where the Work
is a sound recording, Licensor waives the exclusive right to collect, whether individually or via a
performance-rights society (e.g. SoundExchange), royalties for the public digital performance (e.g.
webcast) of the Work, subject to the compulsory license created by 17 USC Section 114 of the US
Copyright Act (or the equivalent in other jurisdictions).

The above rights may be exercised in all media and formats whether now known or hereafter
devised. The above rights include the right to make such modifications as are technically necessary to
exercise the rights in other media and formats. All rights not expressly granted by Licensor are hereby
reserved.

4. Restrictions.The license granted in Section 3 above is expressly made subject to and limited by
the following restrictions:

1. You may distribute, publicly display, publicly perform, or publicly digitally perform the Work
only under the terms of this License, and You must include a copy of, or the Uniform Resource Identifier
for, this License with every copy or phonorecord of the Work You distribute, publicly display, publicly
perform, or publicly digitally perform. You may not offer or impose any terms on the Work that
alter or restrict the terms of this License or the recipients’ exercise of the rights granted hereunder.
You may not sublicense the Work. You must keep intact all notices that refer to this License and to
the disclaimer of warranties. You may not distribute, publicly display, publicly perform, or publicly
digitally perform the Work with any technological measures that control access or use of the Work in



a manner inconsistent with the terms of this License Agreement. The above applies to the Work as
incorporated in a Collective Work, but this does not require the Collective Work apart from the Work
itself to be made subject to the terms of this License. If You create a Collective Work, upon notice
from any Licensor You must, to the extent practicable, remove from the Collective Work any credit as
required by clause 4(c), as requested. If You create a Derivative Work, upon notice from any Licensor
You must, to the extent practicable, remove from the Derivative Work any credit as required by clause
4(c), as requested.

2. You may distribute, publicly display, publicly perform, or publicly digitally perform a Derivative
Work only under the terms of this License, a later version of this License with the same License
Elements as this License, or a Creative Commons iCommons license that contains the same License
Elements as this License (e.g. Attribution-ShareAlike 2.5 Japan). You must include a copy of, or the
Uniform Resource Identifier for, this License or other license specified in the previous sentence with
every copy or phonorecord of each Derivative Work You distribute, publicly display, publicly perform,
or publicly digitally perform. You may not offer or impose any terms on the Derivative Works that
alter or restrict the terms of this License or the recipients’ exercise of the rights granted hereunder,
and You must keep intact all notices that refer to this License and to the disclaimer of warranties.
You may not distribute, publicly display, publicly perform, or publicly digitally perform the Derivative
Work with any technological measures that control access or use of the Work in a manner inconsistent
with the terms of this License Agreement. The above applies to the Derivative Work as incorporated
in a Collective Work, but this does not require the Collective Work apart from the Derivative Work
itself to be made subject to the terms of this License.

3. If you distribute, publicly display, publicly perform, or publicly digitally perform the Work or
any Derivative Works or Collective Works, You must keep intact all copyright notices for the Work



and provide, reasonable to the medium or means You are utilizing: (i) the name of the Original
Author (or pseudonym, if applicable) if supplied, and/or (ii) if the Original Author and/or Licensor
designate another party or parties (e.g. a sponsor institute, publishing entity, journal) for attribution
in Licensor’s copyright notice, terms of service or by other reasonable means, the name of such party
or parties; the title of the Work if supplied; to the extent reasonably practicable, the Uniform Resource
Identifier, if any, that Licensor specifies to be associated with the Work, unless such URI does not refer
to the copyright notice or licensing information for the Work; and in the case of a Derivative Work,
a credit identifying the use of the Work in the Derivative Work (e.g., "French translation of the Work
by Original Author," or "Screenplay based on original Work by Original Author"). Such credit may be
implemented in any reasonable manner; provided, however, that in the case of a Derivative Work or
Collective Work, at a minimum such credit will appear where any other comparable authorship credit
appears and in a manner at least as prominent as such other comparable authorship credit.

5. Representations, Warranties and Disclaimer
UNLESS OTHERWISE AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS

THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND
CONCERNING THE MATERIALS, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, IN-
CLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY, FIT-
NESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LA-
TENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS,
WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EX-
CLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW,
IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY



SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARIS-
ING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination
1. This License and the rights granted hereunder will terminate automatically upon any breach

by You of the terms of this License. Individuals or entities who have received Derivative Works or
Collective Works from You under this License, however, will not have their licenses terminated provided
such individuals or entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8
will survive any termination of this License.

2. Subject to the above terms and conditions, the license granted here is perpetual (for the duration
of the applicable copyright in the Work). Notwithstanding the above, Licensor reserves the right to
release the Work under different license terms or to stop distributing the Work at any time; provided,
however that any such election will not serve to withdraw this License (or any other license that has
been, or is required to be, granted under the terms of this License), and this License will continue in
full force and effect unless terminated as stated above.

8. Miscellaneous
1. Each time You distribute or publicly digitally perform the Work or a Collective Work, the

Licensor offers to the recipient a license to the Work on the same terms and conditions as the license
granted to You under this License.

2. Each time You distribute or publicly digitally perform a Derivative Work, Licensor offers to the
recipient a license to the original Work on the same terms and conditions as the license granted to
You under this License.

3. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect



the validity or enforceability of the remainder of the terms of this License, and without further action
by the parties to this agreement, such provision shall be reformed to the minimum extent necessary
to make such provision valid and enforceable.

4. No term or provision of this License shall be deemed waived and no breach consented to unless
such waiver or consent shall be in writing and signed by the party to be charged with such waiver or
consent.

5. This License constitutes the entire agreement between the parties with respect to the Work
licensed here. There are no understandings, agreements or representations with respect to the Work
not specified here. Licensor shall not be bound by any additional provisions that may appear in any
communication from You. This License may not be modified without the mutual written agreement
of the Licensor and You.

Creative Commons is not a party to this License, and makes no warranty whatsoever in connection
with the Work. Creative Commons will not be liable to You or any party on any legal theory for any
damages whatsoever, including without limitation any general, special, incidental or consequential
damages arising in connection to this license. Notwithstanding the foregoing two (2) sentences, if
Creative Commons has expressly identified itself as the Licensor hereunder, it shall have all rights and
obligations of Licensor.

Except for the limited purpose of indicating to the public that the Work is licensed under the
CCPL, neither party will use the trademark "Creative Commons" or any related trademark or logo
of Creative Commons without the prior written consent of Creative Commons. Any permitted use
will be in compliance with Creative Commons’ then-current trademark usage guidelines, as may be
published on its website or otherwise made available upon request from time to time.

Creative Commons may be contacted at http://creativecommons.org/.



Chapter 27

The attic

This holds material that is not really ready to be incorporated into the main body, but that I don’t
want to lose. Basically, ignore it, unless you’d like to help get it ready for inclusion.

Invertibility of AR process

To begin with, define the lag operator L
Lyt = yt−1

The lag operator is defined to behave just as an algebraic quantity, e.g.,

L2yt = L(Lyt)
= Lyt−1

= yt−2

684



or

(1− L)(1 + L)yt = 1− Lyt + Lyt − L2yt

= 1− yt−2

A mean-zero AR(p) process can be written as

yt − φ1yt−1 − φ2yt−2 − · · · − φpyt−p = εt

or
yt(1− φ1L− φ2L

2 − · · · − φpLp) = εt

Factor this polynomial as

1− φ1L− φ2L
2 − · · · − φpLp = (1− λ1L)(1− λ2L) · · · (1− λpL)

For the moment, just assume that the λi are coefficients to be determined. Since L is defined to
operate as an algebraic quantitiy, determination of the λi is the same as determination of the λi such
that the following two expressions are the same for all z :

1− φ1z − φ2z
2 − · · · − φpzp = (1− λ1z)(1− λ2z) · · · (1− λpz)

Multiply both sides by z−p

z−p − φ1z
1−p − φ2z

2−p − · · ·φp−1z
−1 − φp = (z−1 − λ1)(z−1 − λ2) · · · (z−1 − λp)



and now define λ = z−1 so we get

λp − φ1λ
p−1 − φ2λ

p−2 − · · · − φp−1λ− φp = (λ− λ1)(λ− λ2) · · · (λ− λp)

The LHS is precisely the determinantal polynomial that gives the eigenvalues of F. Therefore, the λi
that are the coefficients of the factorization are simply the eigenvalues of the matrix F.

Now consider a different stationary process

(1− φL)yt = εt

• Stationarity, as above, implies that |φ| < 1.

Multiply both sides by 1 + φL+ φ2L2 + ...+ φjLj to get

(
1 + φL+ φ2L2 + ...+ φjLj

)
(1− φL)yt =

(
1 + φL+ φ2L2 + ...+ φjLj

)
εt

or, multiplying the polynomials on the LHS, we get

(
1 + φL+ φ2L2 + ...+ φjLj − φL− φ2L2 − ...− φjLj − φj+1Lj+1) yt =

(
1 + φL+ φ2L2 + ...+ φjLj

)
εt

and with cancellations we have

(
1− φj+1Lj+1) yt =

(
1 + φL+ φ2L2 + ...+ φjLj

)
εt

so
yt = φj+1Lj+1yt +

(
1 + φL+ φ2L2 + ...+ φjLj

)
εt



Now as j →∞, φj+1Lj+1yt → 0, since |φ| < 1, so

yt ∼=
(
1 + φL+ φ2L2 + ...+ φjLj

)
εt

and the approximation becomes better and better as j increases. However, we started with

(1− φL)yt = εt

Substituting this into the above equation we have

yt ∼=
(
1 + φL+ φ2L2 + ...+ φjLj

)
(1− φL)yt

so (
1 + φL+ φ2L2 + ...+ φjLj

)
(1− φL) ∼= 1

and the approximation becomes arbitrarily good as j increases arbitrarily. Therefore, for |φ| < 1,
define

(1− φL)−1 =
∞∑
j=0

φjLj

Recall that our mean zero AR(p) process

yt(1− φ1L− φ2L
2 − · · · − φpLp) = εt

can be written using the factorization

yt(1− λ1L)(1− λ2L) · · · (1− λpL) = εt



where the λ are the eigenvalues of F, and given stationarity, all the |λi| < 1. Therefore, we can invert
each first order polynomial on the LHS to get

yt =
 ∞∑
j=0

λj1L
j

 ∞∑
j=0

λj2L
j

 · · ·
 ∞∑
j=0

λjpL
j

 εt
The RHS is a product of infinite-order polynomials in L, which can be represented as

yt = (1 + ψ1L+ ψ2L
2 + · · · )εt

where the ψi are real-valued and absolutely summable.

• The ψi are formed of products of powers of the λi, which are in turn functions of the φi.

• The ψi are real-valued because any complex-valued λi always occur in conjugate pairs. This
means that if a+ bi is an eigenvalue of F, then so is a− bi. In multiplication

(a+ bi) (a− bi) = a2 − abi+ abi− b2i2

= a2 + b2

which is real-valued.

• This shows that an AR(p) process is representable as an infinite-order MA(q) process.

• Recall before that by recursive substitution, an AR(p) process can be written as

Yt+j = C + FC + · · ·+ F jC + F j+1Yt−1 + F jEt + F j−1Et+1 + · · ·+ FEt+j−1 + Et+j



If the process is mean zero, then everything with a C drops out. Take this and lag it by j periods
to get

Yt = F j+1Yt−j−1 + F jEt−j + F j−1Et−j+1 + · · ·+ FEt−1 + Et

As j → ∞, the lagged Y on the RHS drops out. The Et−s are vectors of zeros except for their
first element, so we see that the first equation here, in the limit, is just

yt =
∞∑
j=0

(
F j

)
1,1 εt−j

which makes explicit the relationship between the ψi and the φi (and the λi as well, recalling the
previous factorization of F j).

Invertibility of MA(q) process

An MA(q) can be written as
yt − µ = (1 + θ1L+ ...+ θqL

q)εt

As before, the polynomial on the RHS can be factored as

(1 + θ1L+ ...+ θqL
q) = (1− η1L)(1− η2L)...(1− ηqL)

and each of the (1 − ηiL) can be inverted as long as each of the |ηi| < 1. If this is the case, then we
can write

(1 + θ1L+ ...+ θqL
q)−1(yt − µ) = εt



where
(1 + θ1L+ ...+ θqL

q)−1

will be an infinite-order polynomial in L, so we get

∞∑
j=0
−δjLj(yt−j − µ) = εt

with δ0 = −1, or
(yt − µ)− δ1(yt−1 − µ)− δ2(yt−2 − µ) + ... = εt

or
yt = c+ δ1yt−1 + δ2yt−2 + ...+ εt

where
c = µ+ δ1µ+ δ2µ+ ...

So we see that an MA(q) has an infinite AR representation, as long as the |ηi| < 1, i = 1, 2, ..., q.

• It turns out that one can always manipulate the parameters of an MA(q) process to find an
invertible representation. For example, the two MA(1) processes

yt − µ = (1− θL)εt

and
y∗t − µ = (1− θ−1L)ε∗t



have exactly the same moments if
σ2
ε∗ = σ2

εθ
2

For example, we’ve seen that
γ0 = σ2(1 + θ2).

Given the above relationships amongst the parameters,

γ∗0 = σ2
εθ

2(1 + θ−2) = σ2(1 + θ2)

so the variances are the same. It turns out that all the autocovariances will be the same, as is
easily checked. This means that the two MA processes are observationally equivalent. As before,
it’s impossible to distinguish between observationally equivalent processes on the basis of data.

• For a given MA(q) process, it’s always possible to manipulate the parameters to find an invertible
representation (which is unique).

• It’s important to find an invertible representation, since it’s the only representation that allows
one to represent εt as a function of past y′s. The other representations express εt as a function
of future y′s

• Why is invertibility important? The most important reason is that it provides a justification
for the use of parsimonious models. Since an AR(1) process has an MA(∞) representation,
one can reverse the argument and note that at least some MA(∞) processes have an AR(1)
representation. Likewise, some AR(∞) processes have an MA(1) representation. At the time of
estimation, it’s a lot easier to estimate the single AR(1) or MA(1) coefficient rather than the
infinite number of coefficients associated with the MA(∞) or AR(∞) representation.



• This is the reason that ARMA models are popular. Combining low-order AR and MA models
can usually offer a satisfactory representation of univariate time series data using a reasonable
number of parameters.

• Stationarity and invertibility of ARMA models is similar to what we’ve seen - we won’t go into
the details. Likewise, calculating moments is similar.

Exercise 91. Calculate the autocovariances of an ARMA(1,1) model:(1 + φL)yt = c+ (1 + θL)εt

Optimal instruments for GMM

PLEASE IGNORE THE REST OF THIS SECTION: there is a flaw in the argument that needs
correction. In particular, it may be the case that E(Ztεt) 6= 0 if instruments are chosen in the way
suggested here.

An interesting question that arises is how one should choose the instrumental variables Z(wt) to
achieve maximum efficiency.

Note that with this choice of moment conditions, we have that Dn ≡ ∂
∂θm

′(θ) (a K × g matrix) is

Dn(θ) = ∂

∂θ

1
n

(Z ′nhn(θ))
′

= 1
n

(
∂

∂θ
h′n (θ)

)
Zn

which we can define to be
Dn(θ) = 1

n
HnZn.

where Hn is aK×n matrix that has the derivatives of the individual moment conditions as its columns.



Likewise, define the var-cov. of the moment conditions

Ωn = E
[
nmn(θ0)mn(θ0)′

]
= E

[1
n
Z ′nhn(θ0)hn(θ0)′Zn

]

= Z ′nE
(1
n
hn(θ0)hn(θ0)′

)
Zn

≡ Z ′n
Φn

n
Zn

where we have defined Φn = V (hn(θ0)) . Note that the dimension of this matrix is growing with the
sample size, so it is not consistently estimable without additional assumptions.

The asymptotic normality theorem above says that the GMM estimator using the optimal weighting
matrix is distributed as

√
n
(
θ̂ − θ0

)
d→ N(0, V∞)

where

V∞ = lim
n→∞

(HnZn
n

)Z ′nΦnZn
n

−1 Z ′nH ′n
n



−1

. (27.1)

Using an argument similar to that used to prove that Ω−1
∞ is the efficient weighting matrix, we can

show that putting
Zn = Φ−1

n H ′n

causes the above var-cov matrix to simplify to

V∞ = lim
n→∞

HnΦ−1
n H ′n
n

−1

. (27.2)



and furthermore, this matrix is smaller that the limiting var-cov for any other choice of instrumental
variables. (To prove this, examine the difference of the inverses of the var-cov matrices with the
optimal intruments and with non-optimal instruments. As above, you can show that the difference is
positive semi-definite).

• Note that both Hn, which we should write more properly as Hn(θ0), since it depends on θ0, and
Φ must be consistently estimated to apply this.

• Usually, estimation of Hn is straightforward - one just uses

Ĥ = ∂

∂θ
h′n

(
θ̃
)
,

where θ̃ is some initial consistent estimator based on non-optimal instruments.

• Estimation of Φn may not be possible. It is an n×n matrix, so it has more unique elements than
n, the sample size, so without restrictions on the parameters it can’t be estimated consistently.
Basically, you need to provide a parametric specification of the covariances of the ht(θ) in order
to be able to use optimal instruments. A solution is to approximate this matrix parametrically
to define the instruments. Note that the simplified var-cov matrix in equation 27.2 will not
apply if approximately optimal instruments are used - it will be necessary to use an estimator
based upon equation 27.1, where the term n−1Z ′nΦnZn must be estimated consistently apart, for
example by the Newey-West procedure.



27.1 Hurdle models

Returning to the Poisson model, lets look at actual and fitted count probabilities. Actual relative
frequencies are f(y = j) = ∑

i 1(yi = j)/n and fitted frequencies are f̂(y = j) = ∑n
i=1 fY (j|xi, θ̂)/n We

Table 27.1: Actual and Poisson fitted frequencies

Count OBDV ERV
Count Actual Fitted Actual Fitted

0 0.32 0.06 0.86 0.83
1 0.18 0.15 0.10 0.14
2 0.11 0.19 0.02 0.02
3 0.10 0.18 0.004 0.002
4 0.052 0.15 0.002 0.0002
5 0.032 0.10 0 2.4e-5

see that for the OBDV measure, there are many more actual zeros than predicted. For ERV, there
are somewhat more actual zeros than fitted, but the difference is not too important.

Why might OBDV not fit the zeros well? What if people made the decision to contact the doctor
for a first visit, they are sick, then the doctor decides on whether or not follow-up visits are needed.
This is a principal/agent type situation, where the total number of visits depends upon the decision
of both the patient and the doctor. Since different parameters may govern the two decision-makers
choices, we might expect that different parameters govern the probability of zeros versus the other
counts. Let λp be the parameters of the patient’s demand for visits, and let λd be the paramter of the
doctor’s “demand” for visits. The patient will initiate visits according to a discrete choice model, for
example, a logit model:



Pr(Y = 0) = fY (0, λp) = 1− 1/ [1 + exp(−λp)]
Pr(Y > 0) = 1/ [1 + exp(−λp)] ,

The above probabilities are used to estimate the binary 0/1 hurdle process. Then, for the observations
where visits are positive, a truncated Poisson density is estimated. This density is

fY (y, λd|y > 0) = fY (y, λd)
Pr(y > 0)

= fY (y, λd)
1− exp(−λd)

since according to the Poisson model with the doctor’s paramaters,

Pr(y = 0) = exp(−λd)λ0
d

0! .

Since the hurdle and truncated components of the overall density for Y share no parameters, they may
be estimated separately, which is computationally more efficient than estimating the overall model.
(Recall that the BFGS algorithm, for example, will have to invert the approximated Hessian. The
computational overhead is of order K2 where K is the number of parameters to be estimated) . The
expectation of Y is

E(Y |x) = Pr(Y > 0|x)E(Y |Y > 0, x)

=
 1

1 + exp(−λp)

 λd
1− exp(−λd)





Here are hurdle Poisson estimation results for OBDV, obtained from this estimation program
**************************************************************************
MEPS data, OBDV
logit results
Strong convergence
Observations = 500
Function value -0.58939
t-Stats

params t(OPG) t(Sand.) t(Hess)
constant -1.5502 -2.5709 -2.5269 -2.5560
pub_ins 1.0519 3.0520 3.0027 3.0384
priv_ins 0.45867 1.7289 1.6924 1.7166
sex 0.63570 3.0873 3.1677 3.1366
age 0.018614 2.1547 2.1969 2.1807
educ 0.039606 1.0467 0.98710 1.0222
inc 0.077446 1.7655 2.1672 1.9601
Information Criteria
Consistent Akaike

639.89
Schwartz

632.89
Hannan-Quinn

614.96

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-II/estimate_hpoisson.ox


Akaike
603.39

**************************************************************************



The results for the truncated part:
**************************************************************************
MEPS data, OBDV
tpoisson results
Strong convergence
Observations = 500
Function value -2.7042
t-Stats

params t(OPG) t(Sand.) t(Hess)
constant 0.54254 7.4291 1.1747 3.2323
pub_ins 0.31001 6.5708 1.7573 3.7183
priv_ins 0.014382 0.29433 0.10438 0.18112
sex 0.19075 10.293 1.1890 3.6942
age 0.016683 16.148 3.5262 7.9814
educ 0.016286 4.2144 0.56547 1.6353
inc -0.0079016 -2.3186 -0.35309 -0.96078
Information Criteria
Consistent Akaike

2754.7
Schwartz

2747.7
Hannan-Quinn

2729.8



Akaike
2718.2

**************************************************************************



Fitted and actual probabilites (NB-II fits are provided as well) are:

Table 27.2: Actual and Hurdle Poisson fitted frequencies

Count OBDV ERV
Count Actual Fitted HP Fitted NB-II Actual Fitted HP Fitted NB-II

0 0.32 0.32 0.34 0.86 0.86 0.86
1 0.18 0.035 0.16 0.10 0.10 0.10
2 0.11 0.071 0.11 0.02 0.02 0.02
3 0.10 0.10 0.08 0.004 0.006 0.006
4 0.052 0.11 0.06 0.002 0.002 0.002
5 0.032 0.10 0.05 0 0.0005 0.001

For the Hurdle Poisson models, the ERV fit is very accurate. The OBDV fit is not so good. Zeros
are exact, but 1’s and 2’s are underestimated, and higher counts are overestimated. For the NB-II fits,
performance is at least as good as the hurdle Poisson model, and one should recall that many fewer
parameters are used. Hurdle version of the negative binomial model are also widely used.

Finite mixture models

The following are results for a mixture of 2 negative binomial (NB-I) models, for the OBDV data,
which you can replicate using this estimation program

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-II/estimate_mixnegbin.ox


**************************************************************************
MEPS data, OBDV
mixnegbin results
Strong convergence
Observations = 500
Function value -2.2312
t-Stats

params t(OPG) t(Sand.) t(Hess)
constant 0.64852 1.3851 1.3226 1.4358
pub_ins -0.062139 -0.23188 -0.13802 -0.18729
priv_ins 0.093396 0.46948 0.33046 0.40854
sex 0.39785 2.6121 2.2148 2.4882
age 0.015969 2.5173 2.5475 2.7151
educ -0.049175 -1.8013 -1.7061 -1.8036
inc 0.015880 0.58386 0.76782 0.73281
ln_alpha 0.69961 2.3456 2.0396 2.4029
constant -3.6130 -1.6126 -1.7365 -1.8411
pub_ins 2.3456 1.7527 3.7677 2.6519
priv_ins 0.77431 0.73854 1.1366 0.97338
sex 0.34886 0.80035 0.74016 0.81892
age 0.021425 1.1354 1.3032 1.3387
educ 0.22461 2.0922 1.7826 2.1470
inc 0.019227 0.20453 0.40854 0.36313



ln_alpha 2.8419 6.2497 6.8702 7.6182
logit_inv_mix 0.85186 1.7096 1.4827 1.7883
Information Criteria
Consistent Akaike

2353.8
Schwartz

2336.8
Hannan-Quinn

2293.3
Akaike

2265.2
**************************************************************************
Delta method for mix parameter st. err.

mix se_mix
0.70096 0.12043

• The 95% confidence interval for the mix parameter is perilously close to 1, which suggests that
there may really be only one component density, rather than a mixture. Again, this is not the
way to test this - it is merely suggestive.

• Education is interesting. For the subpopulation that is “healthy”, i.e., that makes relatively few
visits, education seems to have a positive effect on visits. For the “unhealthy” group, education
has a negative effect on visits. The other results are more mixed. A larger sample could help
clarify things.



The following are results for a 2 component constrained mixture negative binomial model where all
the slope parameters in λj = exβj are the same across the two components. The constants and the
overdispersion parameters αj are allowed to differ for the two components.



**************************************************************************
MEPS data, OBDV
cmixnegbin results
Strong convergence
Observations = 500
Function value -2.2441
t-Stats

params t(OPG) t(Sand.) t(Hess)
constant -0.34153 -0.94203 -0.91456 -0.97943
pub_ins 0.45320 2.6206 2.5088 2.7067
priv_ins 0.20663 1.4258 1.3105 1.3895
sex 0.37714 3.1948 3.4929 3.5319
age 0.015822 3.1212 3.7806 3.7042
educ 0.011784 0.65887 0.50362 0.58331
inc 0.014088 0.69088 0.96831 0.83408
ln_alpha 1.1798 4.6140 7.2462 6.4293
const_2 1.2621 0.47525 2.5219 1.5060
lnalpha_2 2.7769 1.5539 6.4918 4.2243
logit_inv_mix 2.4888 0.60073 3.7224 1.9693

Information Criteria
Consistent Akaike

2323.5



Schwartz
2312.5

Hannan-Quinn
2284.3

Akaike
2266.1

**************************************************************************
Delta method for mix parameter st. err.

mix se_mix
0.92335 0.047318

• Now the mixture parameter is even closer to 1.

• The slope parameter estimates are pretty close to what we got with the NB-I model.
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Index
A
ARCH, 585
asymptotic equality, 658

C
Cobb-Douglas model, 29
conditional heteroscedasticity, 585
convergence, almost sure, 654
convergence, in distribution, 654
convergence, in probability, 653
Convergence, ordinary, 652
convergence, pointwise, 653
convergence, uniform, 653
convergence, uniform almost sure, 655

E
estimator, linear, 38, 51
estimator, OLS, 32
extremum estimator, 309

F
fitted values, 33

G
GARCH, 585

L
leptokurtosis, 584
leverage, 39
likelihood function, 334

M
matrix, idempotent, 37
matrix, projection, 36
matrix, symmetric, 37

O
observations, influential, 38
outliers, 38
own influence, 39
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P
parameter space, 334

R
R- squared, uncentered, 42
residuals, 33
R-squared, centered, 44
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